
Control-Flow Deobfuscation Using Trace-Informed
Compositional Program Synthesis

BENJAMIN MARIANO∗ and ZITENG WANG∗, University of Texas at Austin, USA
SHANKARA PAILOOR, University of Texas at Austin, USA
CHRISTIAN COLLBERG, University of Arizona, USA
IŞIL DILLIG, University of Texas at Austin, USA

Code deobfuscation, which attempts to simplify code that has been intentionally obfuscated to prevent
understanding, is a critical technique for downstream security analysis tasks like malware detection. While
there has been significant prior work on code deobfuscation, most techniques either do not handle control
flow obfuscations that modify control flow or they target specific classes of control flow obfuscations, making
them unsuitable for handling new types of obfuscations or combinations of existing ones. In this paper, we
study a new deobfuscation technique that is based on program synthesis and that can handle a broad class of
control flow obfuscations. Given an obfuscated program 𝑃 , our approach aims to synthesize a smallest program
that is a control-flow reduction of 𝑃 and that is semantically equivalent. Since our method does not assume
knowledge about the types of obfuscations that have been applied to the original program, the underlying
synthesis problem ends up being very challenging. To address this challenge, we propose a novel trace-informed

compositional synthesis algorithm that leverages hints present in dynamic traces of the obfuscated program to
decompose the synthesis problem into a set of simpler subproblems. In particular, we show how dynamic
traces can be useful for inferring a suitable control-flow skeleton of the deobfuscated program and performing
independent synthesis of each basic block. We have implemented this approach in a tool called Chisel and
evaluate it on 546 benchmarks that have been obfuscated using combinations of six different obfuscation
techniques. Our evaluation shows that our approach is effective and that it produces code that is almost
identical (modulo variable renaming) to the original (non-obfuscated) program in 86% of cases. Our evaluation
also shows that Chisel significantly outperforms existing techniques.

CCS Concepts: • Security and privacy→Malware and its mitigation; • Software and its engineering
→ Search-based software engineering.

Additional Key Words and Phrases: Program Synthesis, Deobfuscation, Obfuscation

ACM Reference Format:
Benjamin Mariano, Ziteng Wang, Shankara Pailoor, Christian Collberg, and Işil Dillig. 2024. Control-Flow
Deobfuscation Using Trace-InformedCompositional Program Synthesis. Proc. ACMProgram. Lang. 8, OOPSLA2,
Article 349 (October 2024), 31 pages. https://doi.org/10.1145/3689789

∗Both authors contributed equally to this research.

Authors’ Contact Information: Benjamin Mariano, bmariano@cs.utexas.edu; Ziteng Wang, ziteng@cs.utexas.edu, University
of Texas at Austin, USA, Austin; Shankara Pailoor, University of Texas at Austin, USA, Austin, spailoor@cs.utexas.edu;
Christian Collberg, University of Arizona, USA, Tucson, collberg@cs.arizona.edu; Işil Dillig, University of Texas at Austin,
USA, Austin, isil@cs.utexas.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM 2475-1421/2024/10-ART349
https://doi.org/10.1145/3689789

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 349. Publication date: October 2024.

https://doi.org/10.1145/3689789
https://doi.org/10.1145/3689789

349:2 Mariano et al.

Obfuscated code

Dynamic traces Deobfuscated
 codeCHISEL

CFS
Control Flow Skeleton (CFS) Genera1on

Trace-
informed

search

Trace
decomp-
osi1on

CFS Comple1on

Modular
synthesis

Trace-
based

pruning

Fig. 1. Illustration of our approach

1 Introduction
Code obfuscation is a frequently-used software protection technique that thwarts reverse engineer-
ing by rewriting code into an equivalent but more complex version. Techniques for obfuscating
code can take a variety of different forms, including introduction of dead or irrelevant code [16],
altering variable and function names [12], unrolling loops [37], replacing program expressions [77],
and introducing bogus control flow [13, 19]. While such obfuscation techniques can be used for
legitimate reasons like IP protection [8, 23, 48], they are also commonly used by hackers to hide
malicious functionality[44, 49, 73] or for avoiding plagiarism detection software [36, 43]. Hence,
techniques for deobfuscating code play a crucial role for downstream analysis tasks, such as malware
identification or software plagiarism detection.
While there has been ample prior work on code deobfuscation techniques for recovering the

original code from its obfuscated version[9, 17, 18, 21, 22, 25, 32, 34, 40, 47, 53, 56, 62–65, 68, 70, 71],
most techniques in this space are designed to handle specific obfuscations. For instance, one
technique [63] targets the opaque predicate transformation that introduces dead-code guarded by
obfuscated conditionals, and another deobfuscation tool [34] targets obfuscations introduced by
the OLLVM [33] obfuscator. Such techniques are point solutions in that they handle individual
obfuscations and can be easily circumvented by combining multiple obfuscation techniques or
slightly modifying existing ones.
In this paper, we present a new general deobfuscation technique based on program synthesis

that can handle a broad class of control-flow obfuscations. Specifically, we consider the class of
obfuscations that introduce bogus control flow and refer to this class as control flow extension (CFE).
CFE obfuscations cover a wide array of known techniques, including flattening [13], dead code
insertion [16], irrelevant code insertion [31], loop unrolling [37], dummy loop insertion [37], block
fission [61], and combinations thereof. Our technique does not require knowledge about the specific
obfuscations used a priori, can handle programs with multiple obfuscations; it can also adapt to
previously unknown obfuscation techniques.

While there have been prior attempts at using program synthesis for code deobfuscation [9, 18, 32,
35, 39, 47, 76], most of these techniques perform deobfuscation at the expression level. Expression-
level synthesis is useful for handling so-called dataflow obfuscations that replace a simple expression
like 𝑎 + 𝑏 with a much more complex equivalent expression, but such techniques are not adequate
for obfuscations that modify control flow, as they are much more global in nature. Unfortunately,
the global nature of these obfuscations also makes the corresponding synthesis problem more
challenging: the code snippets to be reverse engineered are no longer simple expressions but entire
code fragments involving conditionals, loops, and sometimes entire functions.
Our proposed method deals with this challenge using a novel trace-informed compositional

synthesis technique that leverages hints present in dynamic traces of the obfuscated program to
dramatically reduce the search space. As illustrated in Figure 1, a key idea underlying our technique

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 349. Publication date: October 2024.

Control-Flow Deobfuscation Using Trace-Informed Compositional Program Synthesis 349:3

1 bool binSearch(int a[], int n, int m) {
2 int l=0; int u = n-1; int mid;
3 while (l <= u) {
4 mid = (l + u) / 2;
5 if (m == a[mid]) { return true; }
6 else if (m < a[mid]) {u = mid - 1;}
7 else { l = mid + 1; }
8 }
9 return false;
10 }

Fig. 2. Binary search implementation in C

is to synthesize a so-called control-flow skeleton (CFS) of the target program by analyzing dynamic
traces. Intuitively, a CFS completely fixes the control flow structure of the program such that the
only remaining parts to be synthesized are the contents of the individual basic blocks. Thus, in
the first phase (labeled as CFS Generation in Figure 1), our synthesis algorithm obtains the most
likely control flow skeleton of the deobfuscated program by performing trace-informed search.
In addition to biasing the search towards more likely control flow skeletons, the dynamic traces
also facilitate compositional synthesis, as we can infer specifications (in the form of sub-traces)
of the unknown parts of the program. Then, in the second CFS completion phase, our algorithm
synthesizes each basic block independently in a modular fashion and uses the sub-traces associated
with that basic block to prune the search space. Overall, dynamic traces play a prominent role in
our synthesis technique and help both prune and prioritize the search.
We have evaluated our proposed approach on a benchmark set containing 546 obfuscated

programs obtained using 6 control-flow obfuscation techniques from the literature as well as their
combinations. We show that Chisel can successfully deobfuscate 86% of these benchmarks within a
time limit of 20 minutes. Furthermore, we compare to multiple baselines, including the state-of-the-
art control-flow deobfuscator from Yadegari et al. [68], and show that none of them can deobfuscate
nearly as many programs as Chisel. Additionally, we run a detailed performance evaluation of
Chisel on 100 programs generated by Tigress [14] and find that our technique can scale to quite
complex programs, including obfuscated programs with nearly 150,000 lines of code. Finally, we
perform a detailed ablation study where we evaluate the importance of each key component of our
algorithm and show that all components are critical.

In short, this paper makes the following contributions:
• We propose a new deobfuscation algorithm that targets a large family of obfuscations that we
formalize as control-flow extension.
• We present a trace-informed compositional synthesis algorithm that leverages dynamic program
traces to make program synthesis tractable in this context.
• We implement a proof-of-concept source-to-source tool, Chisel, that simplifies obfuscated C
programs.
• We present the results of an extensive experimental evaluation consisting of 546 benchmarks
obfuscated using a variety of different techniques.

2 Overview
In this section, we give a high-level overview of our deobfuscation method using the program in

Figure 2, which gives a standard implementation of binary search in C. Figure 3 shows the resulting
program when Tigress [14], a well-known obfuscator, is used to apply two different obfuscations:
flattening and dead-code insertion. Flattening [13] replaces standard control flow structures (like

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 349. Publication date: October 2024.

349:4 Mariano et al.

1 bool obfFunc(int *var1, int var2, int var3) {
2 int var4; int var5; int var6; ... bool var23;
3 ...
4 var8[11] = &&label11;
5 var9 = 6UL;
6

7 goto *(var8[var9]);
8 label2: var6=(var4+var5)/2; goto label1;
9 label5: return 1;
10 label7: if (var4 <= var5) {goto label2;}
11 else {goto label4;}
12 label1: if (var3==*(var1+var6))
13 {goto label5;}
14 else
15 {goto label10;}
16 label6: var4 = 0; goto label9;
17 label9: var5 = var2-1; goto label7;
18 label10:
19 if (var21 != var22) {
20 if (var3<*(var1+var6))
21 goto label11;
22 } else {

23 while ((var3<*(var1+var6))<=var5) {

24 return 1;
25 }
26 }
27 label0: var4 = var6 + 1; goto label7;
28 label11: var5 = var6 - 1; goto label7;
29 label4: return 0;
30 }

Fig. 3. Binary search obfuscated by Tigress with flattening and dead-code insertion. Note that the presentation
of the program has been altered slightly from the output of Tigress for clarity. Opaque predicates introduced
by dead-code insertion are highlighted in pink .

while loops and if-then-else statements) with gotos and labels as can be seen in lines 7-26 of
Figure 3. Dead-code insertion introduces one or more sections of code that are never executed and
thus have no impact on a program’s behavior. Dead-code is often guarded by a so-called opaque

predicate, which is a complicated expression that always evaluates to a constant value but whose
behavior is difficult to determine statically. In this case, there are two opaque predicates: var21
!= var22 always evaluates to true and the guard (var3 < *(var1+var6)) <= var5 always
evaluates to false.
There are several previously published techniques for returning a flattened function to its

original form [21, 34, 40, 64, 65] and for identifying and removing dead code protected by opaque
predicates [53, 56, 62, 63]. These techniques, by themselves, do not handle programs such as the
one in Figure 3 that compose two or more transformations, particularly given that the choice
of order affects the generated code. For example, the program in Figure 3 was produced by first
applying Tigress’ Flatten transformation and then the AddOpaque transformation; applying these
in the reverse order would have generated different code. This makes rule-based approaches to
deobfuscation unappealing, as they are unlikely to be successful for compositions of different
obfuscations as well as previously unseen ones.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 349. Publication date: October 2024.

Control-Flow Deobfuscation Using Trace-Informed Compositional Program Synthesis 349:5

Traces generated using a = [1,2,3,4,5], n = 5, m = 4
Original Obfuscated

Index 𝑖 Statement 𝑠 Valuation 𝜎 Statement 𝑠′ Valuation 𝜎 ′

1 - - goto *(var8[var9]) -
2 l = 0 {l ↦→ 0} var4 = 0 {var4 ↦→ 0}
3 - - goto label9 -
4 u = n-1 {u ↦→ 4} var5 = var2-1 {var5 ↦→ 4}
5 - - goto label7 -
6 l <= u true var4 <= var5 true
7 - - goto label2 -
8 mid = (l+u)/2 {mid ↦→ 2} var6 = (var4+var5)/2 {var6 ↦→ 2}
9 - - goto label1 -
10 m == a[mid] false var3 == *(var1 + var6) false
11 - - goto label10 -
12 - - var21 != var22 true
14 m < a[mid] false var3 < *(var1+var6) false
15 - - (var3 < *(var1+var6)) <= var5 false
16 l = mid+1 {l ↦→ 3} (var4 = var6+1 {var4 ↦→ 3}
17 - - goto label7 -
18 l <= u true var4 <= var5 true
19 - - goto label2 -
20 mid = (l+u)/2 {mid ↦→ 3} var6 = (var4+var5)/2 {var6 ↦→ 3}
21 - - goto label1 -
22 m == a[mid] true var3 == *(var1+var6) true
23 - - goto label5 -
24 return true - return 1 -

Fig. 4. Dynamic traces of obfuscated and deobfuscated programs. Loop guards are highlighted in blue.

One solution to this problem is program synthesis, which treats the deobfuscation task as a search
problem for the smallest program equivalent to the obfuscated code. In fact, synthesis has been
highly successful at addressing a similar deobfuscation problem: synthesizing expressions that
have been obfuscated using Mixed-Boolean-Arithmetic (MBA) [9, 18]. However, techniques from
that domain do not translate directly to control-flow obfuscation, which may introduce a multitude
of complex boolean expressions and control-flow operators. To address this shortcoming, we
introduce a new synthesis-based algorithm for automatically deobfuscating so-called control-flow

extended programs. Control-flow extension (CFE) describes a family of control-flow obfuscations that
preserve the existing control- and data-flow behavior of the program but augment it with additional
variables, statements, and control-flow constructs. More formally, a program 𝑃 ′ is a control-flow
extension of 𝑃 if, for any given trace 𝑡 ′ of 𝑃 ′ (consisting of a sequence of atomic statements), the
corresponding trace 𝑡 of 𝑃 is a subsequence of 𝑡 ′. Several obfuscation techniques, including control-
flow flattening and dead code insertion shown in Figure 3 as well as their combinations, fall under
the umbrella of CFE techniques.

Our algorithm relies on a key observation about control-flow extended programs: dynamic pro-

gram traces of the obfuscated program can help intelligently guide search for the deobfuscated program.
As an example, consider the two dynamic program traces of the obfuscated and deobfuscated binary
search programs shown in Figure 4. The trace of the original program is shown in the two columns
on the left and the obfuscated trace in the two columns on the right (the left-most column gives
an index 𝑖 for each trace element). The traces are generated when we try to find element m=4 in
the array 𝑎 = [1, 2, 3, 4, 5] (which is of length 𝑛 = 5). It should be noted that the start of both traces
have been omitted for simplicity of presentation.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 349. Publication date: October 2024.

349:6 Mariano et al.

Each trace is a sequence of tuples (𝑠, 𝜎), where 𝑠 is the statement executed (or the guard of
the statement if the statement is an if-then-else or while loop) and a valuation 𝜎 which maps
variables to their values. For simplicity, valuations only show updated variable values and a valuation
of "-" indicates no state is changed. For guards, instead of listing the valuation, we give the value
of the guard when executed (true or false). Additionally, rows where the statement is marked "-"
correspond to no-ops which have been introduced to simplify the presentation.

Our first observation is that the obfuscated trace contains hints as to the control-flow structure
of the deobfuscated program. For instance, the length 5 sequence of instructions starting with the
guard var4 <= var5 evaluating to true is repeated twice. Additionally, no other guard in this
trace evaluates to true twice. Thus, if there is a loop in the deobfuscated code, we deduce that
var4 <= var5 is the most likely guard of that loop. Furthermore, if we deduce that var4 <= var5
is the guard of a loop in the deobfuscated program, it is likely that the statements appearing in
between true invocations of the guard correspond to traces of the loop body.
Our second observation is that, for each element (𝑠, 𝜎) of the original program trace, there is a

"matching" element of the obfuscated trace (𝑠′, 𝜎 ′) which is almost identical to the original program
(modulo variable renaming). Thus, when deobfuscating control-flow-extended programs, we only
need to consider those programs which produce traces that are "reductions" (i.e., subsequences
modulo variable renaming) of the obfuscated trace.
We leverage these observations to formulate a two-staged deobfuscation algorithm that works

as follows. The first stage utilizes a set of rules based on common trace patterns of standard
unobfuscated programs to produce the most-likely control-flow skeletons (CFS) that fix the control
flow structure. Critically, this stage biases the search towards programs that are more likely given
the observed traces of the obfuscated program. Once such a control flow skeleton is conjectured,
our algorithm also produces a so-called trace decomposition, which maps unknowns in the sketch
to subtraces of the obfuscated program. This decomposition is critical to the scalability of our
approach, as it allows each unknown in the sketch to be synthesized independently.

To gain more intuition about these ideas, suppose our algorithm produces the following sketch,
where ?𝑠𝑖 indicates an unknown program fragment that could be filled with sequential code:

?𝑠1 ; while(var3 < *(var1 + var6), ?𝑠2) ; ?𝑠3
Our rules would assign low probability to such a partial program, as the guard var3 < *(var1
+ var6) appears only once in the trace and evaluates to false. On the other hand, consider the
following alternative CFS:

?𝑠1 ; while(var4 <= var5, ?𝑠2) ; ?𝑠3
This sketch would be considered much more promising, as the guard var4 <= var5 appears
multiple times, evaluating to true each time. Given this high-probability sketch, we can identify
which portions of the trace likely correspond to each hole. In particular, the part of the sketch
before the first occurrence of var4 <= var5 corresponds to ?𝑠1, while each portion of the trace
after var4 <= var5 evaluates to true corresponds to ?𝑠2. Thus, a high probability decomposition
inferred for this trace is the following 1:

?𝑠1 ↦→ {[(𝑠′1, 𝜎 ′1), . . . , (𝑠′5, 𝜎 ′5)]}
?2 ↦→ {[(𝑠′7, 𝜎 ′7), . . . , (𝑠′17, 𝜎

′
17)], [(𝑠′19, 𝜎

′
19), . . . , (𝑠′24, 𝜎

′
24)]}

?𝑠3 ↦→ ∅
(1)

1Note that this is the decomposition inferred for a single trace, and thus some control-paths are not explored (e.g., currently
there are no execution paths that exercise ?𝑠3). In practice, we develop a decomposition over multiple traces which explore
different paths within the program.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 349. Publication date: October 2024.

Control-Flow Deobfuscation Using Trace-Informed Compositional Program Synthesis 349:7

Prog 𝑃 → 𝑆 | 𝑃 ; 𝑆
Stmt Groups 𝑆 → 𝐶 | 𝐵 | 𝑙𝑎𝑏𝑒𝑙 : 𝑆
Control-flow Stmt 𝐶 → ite(𝐸, 𝑃1, 𝑃2) | while(𝐸, 𝑃) | break | continue | 𝑔𝑜𝑡𝑜
Stmt Block 𝐵 → 𝐸 | 𝐿 := 𝐸 | 𝐵1;𝐵2 | return 𝐸

Expr 𝐸 → func(𝐸) | 𝑉 | 𝑐𝑜𝑛𝑠𝑡 | 𝐸1 [𝐸2] | (∗𝐸) | alloc(𝐸)
LHS Expr 𝐿 → 𝐿[𝐸] | 𝑉 | (∗𝐿)
Var 𝑉 → 𝑣1 | . . . | 𝑣𝑛

Fig. 5. Source language L𝑜𝑏𝑓 for obfuscated programs and target language L for deobfuscated programs.

Given the control flow structure of the program and a trace decomposition mapping each
unknown to a set of sub-traces, our algorithm "completes" the sketch by replacing each unknown
with straight-line code. Crucially, the trace decomposition allows the algorithm to synthesize each
unknown independently: We can use the trace decomposition to figure out the correspondence
between each hole in the sketch and its corresponding code fragment in the obfuscated program.
This gives us a “specification" for each hole, allowing them to be synthesized independently.

3 Problem Statement
We introduce the control-flow deobfuscation problem in the context of an imperative C-like
language L shown in Figure 5. We describe the syntax of the underlying programming language
using a context-free grammar, which includes a set of non-terminalsV , terminals Σ, productions 𝑅,
and a start symbol 𝛼 . Given a string in 𝑠 ∈ (Σ ∪V)∗, we use 𝑠 ⇒ 𝑠′ to indicate that 𝑠′ is obtained
from 𝑠 by replacing some non-terminal 𝑁 ∈ V with a string 𝑤 ∈ (Σ ∪ V) where 𝑁 → 𝑤 is a
production in 𝑅. We write⇒∗ to indicate the transitive closure of⇒.

Programs inL consist of sequences of statements, which include both control-flow statements (i.e.,
if-then-else (ite) and while loops) as well as non-control-flow statements, which include expressions
and assignments. We differentiate between the language L used for expressing deobfuscated

programs and the language L𝑜𝑏𝑓 used for expressing obfuscated programs: The only difference is
that obfuscated programs may contain gotos while deobfuscated programs may not.

3.1 Traces and Program Equivalence
As mentioned in Section 2, control-flow extended programs alter the control-flow behavior of
a program while maintaining a relationship between traces of the source and target programs.
As is standard, we consider a trace 𝑡 to be a sequence of tuples of the form (𝑠, 𝜎), where 𝑠 is an
atomic statement and 𝜎 is a valuation mapping variables to their values (after 𝑠 is executed). Atomic
statements do not have control flow and include (1) assignments and expressions from Figure 5
and (2) boolean guards 𝑔 that encode control flow predicates. The guards track predicates used
in conditionals and loops and whether they evaluate to true or false. For example, consider the
program 𝑖𝑡𝑒 (𝑥 < 0, 𝑦 := 0, 𝑦 := 1) with input 𝑥 and suppose we execute this program on input 𝑥 = 5.
This execution would be encoded using the following trace 𝑡 :

(!(𝑥 < 0), [𝑥 ↦→ 5]), (𝑦 := 1, [𝑥 ↦→ 5, 𝑦 ↦→ 1])
The first element in 𝑡 shows that the predicate of the if statement evaluates to false in this execution,
and the second element corresponds to the execution of the false branch.
We use the notation 𝜎 ⊆ 𝜎 ′ to indicate that the valuation 𝜎 ′ is an extension of 𝜎 , meaning that

(1) 𝜎, 𝜎 ′ agree on the values of all variables in the domain of 𝜎 and (2) 𝜎 ′ may contain additional
variables not in the domain of 𝜎 . Given a program 𝑃 with input 𝜎 , we denote the trace of 𝑃 on

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 349. Publication date: October 2024.

349:8 Mariano et al.

input 𝜎 as Trace(𝑃, 𝜎), and we write 𝑡 .𝜎𝑖𝑛 to denote the the input that produced 𝑡 . We also use the
notation J𝑃K𝜎 to denote the program output when 𝑃 is executed on 𝜎 . We say two programs 𝑃, 𝑃
are semantically equivalent, denoted 𝑃 ≡ 𝑃 , if, for all input valuations 𝜎 , we have J𝑃K𝜎 = J𝑃K𝜎 .

3.2 Control-flow Extensions and Reductions
We formalize the class of obfuscations targeted in this paper as control-flow extensions. To define
this concept, we first introduce the notions of guard-free trace and trace extension:

Definition 3.1 (Guard-free trace). Given trace 𝑡 , 𝜒 (𝑡) yields a trace 𝑡 ′ such that (1) 𝑡 ′ does not
contain any boolean guards, and (2) 𝑡 ′ is the longest subsequence of 𝑡 satisfying the first condition.

Example 3.1. Suppose 𝑡 is the trace (!(𝑥 < 0), [𝑥 ↦→ 5]), (𝑦 := 1, [𝑥 ↦→ 5, 𝑦 ↦→ 1]) from above.

Then 𝜒 (𝑡) is (𝑦 := 1, [𝑥 ↦→ 5, 𝑦 ↦→ 1]).
Control flow obfuscation can modify control flow predicates in subtle ways – for example, the

guard of a loop may be negated so that while(x) {...} becomes while(true) { if(!x) break;
...} or a conditional guard x && y may be split into nested guards x and y separately. To address
this, we define trace extensions over guard-free traces 𝜒 (𝑡), which remove guards from the trace 𝑡 .

Definition 3.2 (Trace Extension). We say that a trace 𝑡 is an extension of trace 𝑡 if there exists a

subsequence 𝑡 ′ of 𝑡 such that for every trace element 𝜒 (𝑡) [𝑖] = (𝑠, 𝜎), 𝜒 (𝑡 ′) [𝑖] = (𝑠, �̂�) where 𝜎 ⊆ �̂� .

Example 3.2. Consider the three following traces:
𝑡1 = [(x++, {𝑥 ↦→ 4})]
𝑡2 = [(x--, {𝑥 ↦→ 2}), (x++, {𝑥 ↦→ 3})]
𝑡3 = [(y--, {𝑥 ↦→ 3, 𝑦 ↦→ 1}), (x++, {𝑥 ↦→ 4, 𝑦 ↦→ 1})]

Here, 𝑡3 is an extension of 𝑡1 as both have an element x++ where 𝑥 is assigned to 4. No other trace is an
extension of any other one.

We note that checking that a trace 𝑡 is an extension of a trace 𝑡 ′ can be done efficiently, as one
can first project the states of 𝑡 onto the variables 𝑉 occurring in 𝑡 ′ to derive a trace 𝑡𝑉 , and then
check that 𝑡 ′ is a subtrace of 𝑡𝑉 .

Definition 3.3 (Control-flow Extension). Program 𝑃 is a control-flow extension of program

𝑃 iff 𝑃 is observationally equivalent to 𝑃 (written 𝑃 ≡ 𝑃) and, for every input 𝜎 , Trace(𝑃, 𝜎) is an
extension of Trace(𝑃, 𝜎).
Example 3.3. Suppose 𝑃 is x := 1; return x; Then the following program is a control-flow

extension of 𝑃 :

y := 1; if (y >= 1){x := 1;} return x

as any trace of both programs will contain an entry with x := 1 and where 𝑥 maps to 1.

Definition 3.4 (Control-flow Reduction). We say that a program 𝑃 is a control-flow reduction

of program 𝑃 iff 𝑃 is a control-flow extension of 𝑃 .

3.3 Problem Statement
When deobfuscating a control-flow extended program, our goal is to find the “simplest” deobfuscated
program. We formalize this notion as a minimum control-flow reduction:

Definition 3.5 (Minimum Control-flow Reduction). 𝑃 is a minimum control-flow reduction

of 𝑃 if 𝑃 is a control-flow reduction of 𝑃 and for any control-flow reduction 𝑃 ′ of 𝑃 , we have |𝑃 | ≤ |𝑃 ′ |,
where |·| returns the AST size of a program.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 349. Publication date: October 2024.

Control-Flow Deobfuscation Using Trace-Informed Compositional Program Synthesis 349:9

We now define the control-flow deobfuscation problem:

Definition 3.6 (Control-flow Deobfuscation Problem). Given some (obfuscated) program 𝑃

from L𝑜𝑏𝑓 , find a minimum control-flow reduction 𝑃 of 𝑃 in L.

4 Deobfuscation Algorithm
In this section, we first introduce the concept of a trace-augmented sketch (or t-sketch for short)
which plays a key role in our synthesis algorithm. We then describe the top-level deobfuscation
procedure, followed by a discussion of its two core components.

4.1 Trace Augmented Program Sketch
A trace-augmented sketch, abbreviated 𝑡-sketch, consists of two parts: a regular sketch and a trace
decomposition Δ. A regular sketch is a program with unknown parts:

Definition 4.1 (Sketch). Let L = (V, Σ, 𝑅, 𝛼) be the language from Figure 5. A program sketch

S over L is a string in (Σ ∪V)∗ where 𝛼 ⇒∗ S. We refer to any non-terminal 𝑁 ∈ V in S as a hole.
We distinguish between two types of holes. A control flow hole is a hole ?𝑐 such that ?𝑐 ⇒∗ 𝐶 , while a

statement hole ?𝑠 is a hole that only derives sequential code. We also write ? to denote a hole of either
type. Finally, we say a sketch is complete if it has no holes, and it is control-flow complete if it has no
control-flow holes.

Example 4.1. The following is a sketch of a program containing a loop:

?𝑐1 ; while(x > y, ?𝑠) ; ?𝑐2
Because the sketch contains control-flow holes, it is not a control-flow complete sketch.

As discussed earlier, our technique decomposes the original synthesis problem into smaller
subproblems by mapping each hole ? in the sketch to a set of subtraces. We introduce trace

decomposition to capture this idea:

Definition 4.2 (Trace Decomposition). Given a sketch S and set of traces 𝑇 , a trace decom-

position Δ is a mapping from each hole ?𝑖 in S to a set of traces 𝑇𝑖 such that each trace 𝑡𝑖 ∈ 𝑇𝑖 is a
subsequence of some trace in 𝑇 .

Example 4.2. Consider the sketch from Example 4.1 and the following trace:

1. y := 10 {𝑥 ↦→ 14, 𝑦 ↦→ 10} 5. y += 2 {𝑥 ↦→ 14, 𝑦 ↦→ 14}
2. x > y {𝑥 ↦→ 14, 𝑦 ↦→ 10} 6. x > y {𝑥 ↦→ 14, 𝑦 ↦→ 14}
3. y += 2 {𝑥 ↦→ 14, 𝑦 ↦→ 12} 7. return y {𝑥 ↦→ 14, 𝑦 ↦→ 14}
4. x > y {𝑥 ↦→ 14, 𝑦 ↦→ 12}

The following is a decomposition is this trace:

?𝑐1 ↦→ {[(y := 10, {𝑥 ↦→ 14, 𝑦 ↦→ 10})]}
?𝑠 ↦→ {[(y += 2, {𝑥 ↦→ 14, 𝑦 ↦→ 12})], [(y += 2, {𝑥 ↦→ 14, 𝑦 ↦→ 14})]}
?𝑐2 ↦→ {[(return y, {𝑥 ↦→ 14, 𝑦 ↦→ 14})]}

Definition 4.3 (Trace-augmented sketch). Given a program with traces 𝑇 , a 𝑡-sketch Θ is a

pair (S,Δ) where S is a sketch and Δ is a trace decomposition of 𝑇 with respect to S. We write Θ.S
and Θ.Δ to indicate each component of the 𝑡-sketch.

Finally, because we are interested in t-sketches that are control-flow complete, we refer to them
as control flow skeletons:

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 349. Publication date: October 2024.

349:10 Mariano et al.

1: procedure Deobfuscate(𝑃,𝑇)
2: input: Obfuscated program 𝑃

3: input: Trace set 𝑇 of 𝑃
4: output: Deobfuscated program 𝑃

5: while true do
6: Θ← GetNextCFS(𝑇)
7: if Θ = ⊥ then return ⊥
8: 𝑉 ← GetInputVars(𝑃)
9: while true do
10: 𝑃 ← CompleteCFS(Θ, 𝑃,𝑉)
11: if isReduction(𝑃, 𝑃) then return 𝑃

12: 𝑉 ′ ← GetNextVocabulary(Θ)
13: if 𝑉 = 𝑉 ′ then break;
14: else 𝑉 ← 𝑉 ′

Algorithm 1. Top-level deobfuscation algorithm. We note isReduction returns false when 𝑃 is ⊥.

Definition 4.4 (Control-flow skeleton). A control-flow skeleton (CFS) is a 𝑡-sketch where Θ.S
is control-flow complete.

In other words, a CFS completely fixes the control flow of the target program.

4.2 Top-Level Algorithm
Algorithm 1 shows our top-level deobfuscation algorithm. As discussed earlier, the key idea is to
use dynamic traces of the obfuscated program to make synthesis more tractable. The algorithm
consists of two phases that are repeatedly executed until a solution is found:
• Phase 1: This phase corresponds to the body of the outer loop and identifies the most promising

control-flow skeleton by calling GetNextCFS at line 6. As discussed in the next subsection, we
use the provided traces to determine how promising a control flow skeleton is.
• Phase 2: This phase corresponds to the inner loop of Algorithm 1 and tries to synthesize all
basic blocks in a given CFS such that the resulting program 𝑃 is a control flow reduction of the
input program 𝑃 . Specifically, given a CFS and a “vocabulary” 𝑉 , CompleteCFS (invoked at line
10) returns a complete program that only uses variables in 𝑉 . This vocabulary is initialized to
the input variables (line 8) and iteratively updated (via the call to GetNextVocabulary at line
12) until a fixed point is reached. The idea behind the vocabulary is that the obfuscation may
introduce many spurious variables, so we wish to find a semantically equivalent program that
only uses a minimal set of variables. This is why Algorithm 1 only updates the vocabulary if it
fails to find a completion of the CFS with the existing vocabulary.
In the next two subsections, we present the GetNextCFS and CompleteCFS procedures in more

detail and provide information about growing the deobfuscation vocabulary in Section 5.

4.3 Synthesizing Control Flow Skeletons
Algorithm 2 shows the GetNextCFS procedure that lazily enumerates control flow skeletons in
decreasing order of likelihood with respect to the provided traces 𝑇 . The core idea is to pattern
match a given sketch against the dynamic program traces to determine whether this control flow
structure is probable with respect to the observed program executions. For a given sketch S,
the algorithm also uses 𝑇 to deduce a trace decomposition and refines the current sketch into a

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 349. Publication date: October 2024.

Control-Flow Deobfuscation Using Trace-Informed Compositional Program Synthesis 349:11

1: procedure GetNextCFS(𝑇)
2: input: Trace set 𝑇 of 𝑃
3: output: Next most likely 𝑡-sketch given 𝑇
4: W ← PriorityQueue((?𝑐

𝑃
, {?𝑐

𝑃
↦→ 𝑇 }), 1)

5: while ¬Empty(W) do
6: (Θ,𝑤) ←W .dequeue()
7: if ControlFlowComplete(Θ.S) then
8: yield Θ

9: F ← Expand(Θ)
10: for E𝑖 ∈ F do
11: Υ← Decompose(Θ, E𝑖)
12: C ← {(Θ′𝑖 ,𝑤 ×𝑤𝑖) | (Θ𝑖 ,𝑤𝑖) ∈ Υ}
13: W ←W .addAll(C)
14: return ⊥

Algorithm 2. Algorithm for getting next CFS. The Expand procedure replaces one of the control flow holes in
the sketch with the right hand side of all possible productions in the grammar.

𝑡-sketch. This process of repeatedly refining 𝑡-sketches continues until the algorithm finds one that
is control-flow complete.

In more detail, the algorithm maintains a priority queue of 𝑡-sketches along with a corresponding
score. Intuitively, the higher the score, the more likely we consider this sketch to be with respect
to the observed execution traces. The queue is initialized to be a singleton set containing the
trivial sketch ?𝑐

𝑃
(i.e., a single hole corresponding to the start symbol of the grammar) and the

decomposition {?𝑐
𝑃
↦→ 𝑇 } which just maps that hole to the input trace set 𝑇 (line 4).

The main loop (lines 5-13) starts by dequeueing the next most likely 𝑡-sketch Θ = (S,Δ) from
the priority queue. If S is control-flow complete, then Θ is returned as the next most promising
CFS. Otherwise, the algorithm invokes Expand to refine the current 𝑡-sketch by choosing one of the
control-flow holes in S and finding possible ways to fill that hole. In particular, Expand returns a
set of mappings from holes in S to a candidate expansion. Here, an expansion for hole ?𝑐 (associated
with non-terminal 𝑁) is a string 𝑠 over the alphabet (V ∪ Σ) such that 𝑁 ⇒∗ 𝑠 . Thus, hole ?𝑐 can
be replaced with 𝑠 to generate a refinement of S. For example, given the empty program ?, Expand
returns a set of possible refinements, such as ite(𝑥 < 0, ?, ?). Note that, when filling a hole using a
conditional or loop, the Expand procedure fixes their guards but not their body (as in the previous
example). When expanding a hole ?, guards are chosen based on which guards appear in traces
associated with ? in the decomposition Θ.Δ.
Each candidate expansion E𝑖 produced by Expand will contain holes that are not present in S,

meaning that we must infer subtraces for the new holes. Thus, lines 10-13 process each candidate

Table 1. Examples of Trace Matching Rules.

Trace Matching Rules
Name "Regex" Structure "Regex" Parts Control-flow Structure

basic-loop (pre) (body)* [!g] (post) pre: .* body: g[ˆg]* post: .* (pre) while(g) do (body) (post)
break-loop (pre) (body)* [g2] (post) pre: .* body: g[ˆg]* post: .* while(g) do (body)
ite-true (pre) [g] (body) (post) pre: [ˆg]* body: ˆs* post: [s] (.)* (pre) if (g) {(body)} else {*} (post)

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 349. Publication date: October 2024.

349:12 Mariano et al.

proposed by Expand to generate a corresponding new 𝑡-sketch. Specifically, the Decompose pro-
cedure (discussed next) infers a set of new trace decompositions, along with their corresponding
scores, for each E𝑖 . Finally, the resulting 𝑡-sketches are added to the priority queue.

4.3.1 Rule-based Decomposition. The basic idea underlying trace decomposition is to pattern
match the given trace against regular expressions that encode common program structures. If there
is a match, we decompose the trace into subtraces based on which parts of the regex correspond to
which subtraces. While our algorithm considers multiple decompositions, only those 𝑡-sketches
that have a match are assigned a high score, allowing them to be prioritized by the search algorithm.
It should be noted that our regex matching is not greedy in the sense that it will assign a high score
to all decompositions matching one of the regular expression rules.

Table 1 presents examples of regexes used for decomposing traces. Naturally, these rules capture
common control flow patterns. For example, the first rule describes traces that correspond to basic
while loops (without break). According to this rule, a trace 𝑡 of the obfuscated program is likely
to correspond to a while loop in the original unobfuscated program if 𝑡 exhibits the pattern “Pre
followed by any number of occurrences of Body, followed by !𝑔 and then Post". Here, Pre and Post

can include any arbitrary sequence of statements, but Body must start with guard 𝑔 (evaluating to
true) and must be followed by any sequence of statements except for !𝑔 (denoting 𝑔 evaluating to
false). Similarly, the second regex captures common looping patterns that involve a break statement.
This regex is similar to the first one except that the guard𝑔2 that terminates the loop can be different
from 𝑔. The last rule captures common if-then-else patterns: here, Pre, Post indicate the part of the
trace before and after the if statement respectively, and body is the subtrace for the true branch.

Example 4.3. Consider the trace from Example 4.2 and let x > y be our guard 𝑔. Then, the trace will
be accepted by the basic-loop rule with the first statement y := 10 matching pre, states 2-5 matching

body, state 6 matching !𝑔, and state 7 matching post.

Figure 6 shows how the rules from Table 1 are used to assign scores to 𝑡-sketches using judgments
Θ, E𝑖 { Θ𝑖 ,𝑤𝑖 . The meaning of this judgment is that, given a 𝑡-sketch Θ and candidate expansion
E𝑖 , we refine Θ to Θ𝑖 with score𝑤𝑖 . The Decompose procedure is defined using these rules as:

Decompose(Θ, E𝑖) = {(Θ𝑖 ,𝑤𝑖) | Θ, E𝑖 { Θ𝑖 ,𝑤𝑖 }

We explain the rules from Figure 6 in more detail below.

While. This rule decomposes candidate expansions involving a while loop with guard 𝑔 and body
?𝑏𝑜𝑑𝑦 where the loop has prefix ?pre and suffix ?𝑝𝑜𝑠𝑡 . We first check whether all traces in Θ.Δ[?]
match one of the loop patterns, such as basic-loop or break-loop from Table 1. If so, the candidate
expansion is assigned a high score 𝑤𝛾 and a new sketch S𝑖 is obtained by replacing hole ? with
E𝑖 [?]. Finally, we obtain a decomposition by associating each of the holes ?pre, ?body, and ?post with
the sub-traces that are matched by pre, body, and post in the loop rules from Table 1.

ITE. Similar toWhile, this checks whether all traces match one of the ITE patterns, such as the
ite-true regex from Table 1. Then, it performs the trace decomposition based on which parts of the
trace match the ITE regexes.

Block. This rule considers the case where the expansion is straight-line code. It first checks if
there is a guard for which a loop or if-then-else pattern that could match with all the traces. If
the check fails, then no viable control flow pattern is present and so it proceeds to decompose
the trace by removing all control flow statements from Θ.Δ[?]. Since the rule assumes that the
original program fragment under consideration does not have nested control-flow statements, any

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 349. Publication date: October 2024.

Control-Flow Deobfuscation Using Trace-Informed Compositional Program Synthesis 349:13

Rules for constructing trace decomposition Δ

E𝑖 [?] =?𝑝𝑟𝑒 ; while(𝑔, ?𝑏𝑜𝑑𝑦) ; ?𝑝𝑜𝑠𝑡 S𝑖 = Θ.S[? ↦→ E𝑖 [?]]
∀𝑡 𝑗 ∈ Θ.Δ[?] . MatchLoop(𝑡 𝑗 , 𝑔) = (𝑃 𝑗 , 𝐵 𝑗 ,𝐶 𝑗)

Δ𝑖 = Δ[?𝑝𝑟𝑒 ↦→ ∪𝑗𝑃 𝑗 , ?𝑏𝑜𝑑𝑦 ↦→ ∪𝑗𝐵 𝑗 , ?𝑝𝑜𝑠𝑡 ↦→ ∪𝑗𝐶 𝑗]
Θ, E𝑖 { (S𝑖 ,Δ𝑖),𝑤𝛾

WHILE

E𝑖 [?] =?𝑝𝑟𝑒 ; ite(𝑔, ?𝑡𝑟𝑢𝑒 , ?𝑓 𝑎𝑙𝑠𝑒) ; ?𝑝𝑜𝑠𝑡 S𝑖 = Θ.S[? ↦→ E𝑖 [?]]
∀𝑡 𝑗 ∈ Θ.Δ[?] . (𝑃 𝑗 ,𝑇𝑗 , 𝐹 𝑗 ,𝐶 𝑗) = MatchITE(𝑡 𝑗 , 𝑔)

Δ𝑖 = Δ[?𝑝𝑟𝑒 ↦→ ∪𝑗𝑃 𝑗 , ?𝑡𝑟𝑢𝑒 ↦→ ∪𝑗𝑇𝑗 , ?𝑓 𝑎𝑙𝑠𝑒 ↦→ ∪𝑗𝐹 𝑗 , ?𝑝𝑜𝑠𝑡 ↦→ ∪𝑗𝐶 𝑗]
Θ, E𝑖 { (S𝑖 ,Δ𝑖),𝑤𝛾

ITE

𝑇 := Θ.Δ[?] 𝐺 := ∪𝑡 ∈𝑇 Guards(𝑡).
¬(∃𝑔 ∈ 𝐺. ∀𝑡 ∈ 𝑇 . MatchLoop(𝑡, 𝑔) ∨MatchITE(𝑡, 𝑔))

E𝑖 [?] =?𝐵 S𝑖 = Θ.S[ℎ ↦→ E𝑖 [ℎ]]
Δ𝑖 = Θ.Δ[?𝐵 ↦→ RemoveControlFlowStmts(Θ.Δ[?])]

Θ, E𝑖 { (S𝑖 ,Δ𝑖),𝑤𝛾

BLOCK

E𝑖 [?] =?𝑝𝑟𝑒 ; while(𝑔, ?𝑏𝑜𝑑𝑦) ; ?𝑝𝑜𝑠𝑡 S𝑖 = Θ.S[ℎ ↦→ E𝑖 [ℎ]]
∃𝑡 𝑗 ∈ Θ.Δ[?] . ¬MatchLoop(𝑡 𝑗 , 𝑔)

Δ𝑖 = Θ.Δ[?𝑝𝑟𝑒 ↦→ ∗, ?𝑏𝑜𝑑𝑦 ↦→ ∗, ?𝑝𝑜𝑠𝑡 ↦→ ∗]
Θ, E𝑖 { (S𝑖 ,Δ𝑖),𝑤𝛼

NO-WHILE

Fig. 6. Rules describing Decompose algorithm

control-flow elements in the trace must be due to the deobfuscation and are therefore removed
from the decomposed trace for ?𝐵 .

No-While. This rule exemplifies how we deprioritize unlikely sketches. The proposed expansion
for hole ? involves a loop with guard 𝑔, but there exists at least one trace that does not match a loop
pattern for guard 𝑔. Therefore, it is unlikely that E𝑖 is a correct expansion of ?; hence, we assign it
a low score𝑤𝛼 . Furthermore, the decomposition does not carry any information and allows any
sub-trace (indicated by ∗).

Example 4.4. Consider the trace 𝑡 from Example 4.2, let Θ = (?𝑐
𝑃
, {𝑡}) (where ?𝑐

𝑃
is simply the

starting hole), and let E𝑖 [?𝑐𝑃] = ?𝑝𝑟𝑒 ; while(𝑔, ?𝑏𝑜𝑑𝑦) ; ?𝑝𝑜𝑠𝑡 . In this case, 𝑡 matches the basic-loop

rule (as mentioned in Example 4.3) and thus Δ, E𝑖 { (S𝑖 ,Δ𝑖),𝑤𝛾 is satisfied where S𝑖 = E𝑖 [?𝑐𝑝] and
Δ𝑖 = {?𝑝𝑟𝑒 ↦→ {[(𝑠1, 𝜎1)]}, ?𝑏𝑜𝑑𝑦 ↦→ {[(𝑠2, 𝜎2), . . . , (𝑠5, 𝜎5)]}, ?𝑝𝑜𝑠𝑡 ↦→ {[(𝑠7, 𝜎7)]}}.

4.4 Synthesizing Basic Blocks of a Control Flow Skeleton
We now turn our attention to Algorithm 3 for synthesizing basic blocks in a CFS. The CompleteCFS
procedure takes as input a CFS Θ (i.e., Θ has no control flow holes) and a candidate vocabulary 𝑉
for the deobfuscated program. It either returns ⊥ to indicate that Θ is infeasible (under vocabulary
𝑉) or returns a deobfuscated program over vocabulary𝑉 . Recall that the explicit vocabulary allows
us to disregard some of the variables in the obfuscated program, as program obfuscations typically

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 349. Publication date: October 2024.

349:14 Mariano et al.

1: procedure CompleteCFS(Θ, 𝑃,𝑉)
2: input: CFS Θ; deobfuscation vocabulary 𝑉
3: output: Completion 𝑃 of Θ
4: 𝐶 ← ∅
5: for ?𝑠 ∈ GetHoles(Θ.S) do
6: 𝑃?𝑠 ← GetObfuscatedCode(𝑃,Θ.Δ[?𝑠])
7: 𝑃?𝑠 ← SynthesizeBasicBlock(?𝑠 ,Θ.Δ[?𝑠], 𝑃?𝑠 ,𝑉)
8: if 𝑃?𝑠 = ⊥ then return ⊥
9: 𝐶 [?𝑠] ← 𝑃?𝑠

10: return Θ.S[𝐶]

Algorithm 3. Algorithm for completing a control flow skeleton

introduce many redundant variables. To this end, we introduce the notion of equivalence modulo a

set of variables as follows:

Definition 4.5 (Equivalence modulo 𝑉). Programs 𝑃 and 𝑃 ′ are equivalent modulo variables

𝑉 , written 𝑃 ≡𝑉 𝑃 ′, if:

∀𝜎𝑖𝑛, 𝜎𝑜𝑢𝑡 , 𝜎 ′𝑜𝑢𝑡 . J𝑃K𝜎𝑖𝑛 = 𝜎𝑜𝑢𝑡 ∧ J𝑃 ′K𝜎𝑖𝑛 = 𝜎 ′𝑜𝑢𝑡 =⇒ ∀𝑣 ∈ 𝑉 . 𝜎𝑜𝑢𝑡 [𝑣] = 𝜎 ′𝑜𝑢𝑡 [𝑣]

In other words, 𝑃 and 𝑃 ′ are equivalent modulo variables 𝑉 if, given the same input, their outputs

agree over 𝑉 .

With this definition in place, we now explain the CompleteCFS procedure presented in Al-
gorithm 3. At a high level, this algorithm performs synthesis in a modular way in that it tries
to synthesize each basic block independently. For each statement hole ?𝑠 , it first retrieves the
obfuscated version of the code via the call to GetObfuscatedCode at line 6.2 Then, it invokes the
SynthesizeBasicBlock procedure (discussed next) to find a completion 𝑃?𝑠 of the hole such that
𝑃?𝑠 is equivalent to its obfuscated counterpart 𝑃?𝑠 modulo variables 𝑉 . If the algorithm fails to find
an equivalent program for any hole in the sketch, either the sketch or the trace decomposition is
wrong, and the algorithm returns ⊥. The final deobfuscated program is obtained by replacing all
the holes in the sketch with their completions as given by mapping 𝐶 .

We next explain SynthesizeBasicBlock (see Algorithm 4), which performs top-down enumera-
tive search for synthesizing straight-line code. The key difference of this algorithm from standard
top-down enumerative synthesis is that it utilizes a notion of trace extensibility to identify dead
ends. In more detail, it takes as input a hole ?𝑠 to be filled in, subtraces 𝑇 associated with ?𝑠 , deob-
fuscation vocabulary𝑉 , and code 𝑃?𝑠 corresponding to ?𝑠 in the obfuscated program. Similar to any
top-down synthesis algorithm, it maintains a priority queue over partial programs, sorted according
to program size. In each iteration, it dequeues the smallest program and checks whether it is (a)
complete (meaning there are no holes) and (b) equivalent to the obfuscated code modulo vocabulary
𝑉 . If so, this program is returned as a solution (line 10). Otherwise, 𝑃?𝑠 is refined by choosing
a statement hole and replacing it with either an atomic statement or a sequence of statements
(line 12). For each possible refinement 𝑃 ′?𝑠 of 𝑃?𝑠 , the algorithm checks its feasibility by calling the
TraceExtensible procedure, defined as follows:

2Since the obfuscated version of the code can be inferred from the trace in a straightforward way, we do not discuss the
implementation of GetObfuscatedCode in detail.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 349. Publication date: October 2024.

Control-Flow Deobfuscation Using Trace-Informed Compositional Program Synthesis 349:15

1: procedure SynthesizeBasicBlock(?𝑠 ,𝑇 , 𝑃?𝑠 ,𝑉)
2: input: Hole ?𝑠 to be completed
3: input: Traces 𝑇 for ?𝑠
4: input: Obfuscated code snippet 𝑃?𝑠 for ?𝑠
5: input: Variable set 𝑉
6: output: Deobfuscated version of 𝑃
7: W ← PriorityQueue(?𝑠 , 1)
8: while ¬Empty(𝑊) do
9: 𝑃?𝑠 ←W .dequeue()
10: if Complete(𝑃?𝑠) ∧ 𝑃?𝑠 ≡𝑉 𝑃?𝑠 then return 𝑃?𝑠

11: for 𝑃 ′?𝑠 ∈ ExpandStmtHole(𝑃?𝑠 ,𝑇 ,𝑉) do
12: if TraceExtensible(𝑃 ′?𝑠 ,𝑇) then
13: W ←W .add(𝑃 ′?𝑠 , |𝑃 ′?𝑠 |)
14: return ⊥

Algorithm 4. Algorithm for synthesizing a statement hole

Definition 4.6 (Trace extensibility). A code fragment 𝑃 is extensible with respect to trace set 𝑇

if, for every trace 𝑡 ∈ 𝑇 , 𝑡 is a trace-extension of Trace(𝑃, 𝑡 .𝜎𝑖𝑛).

Intuitively, if 𝑃 ′?𝑠 is not trace extensible with respect to 𝑇 , 𝑃 ′?𝑠 cannot be completed in a way that
will yield an equivalent deobfuscated program. Hence, the algorithm discards all programs that are
not extensible with respect to 𝑇 .

4.5 Properties of the Algorithm
In this section, we prove our algorithm is sound and complete and briefly discuss the assumptions
under which our algorithm returns the minimum control-flow reduction.

Theorem 4.1 (Soundness). If 𝑃 = Deobfuscate(𝑃,𝑇) and 𝑇 are traces of 𝑃 , 𝑃 is either ⊥ or 𝑃 is

a control-flow reduction of 𝑃 .

Proof. Follows from the correctness of isReduction(𝑃, 𝑃). □

Theorem 4.2 (Completeness). For traces𝑇 of 𝑃 , Deobfuscate(𝑃,𝑇) eventually returns a control-
flow reduction 𝑃 of 𝑃 if one exists.

Proof. Please see the extended version of the paper [46] for full proofs. □

Our algorithm is guaranteed to return a minimum control-flow reduction under certain assump-
tions about GetNextCFS and GrowVocabulary. For more information on these assumptions and a
proof of Theorem 4.2, see the extended version of the paper [46].

5 Implementation
We implemented our algorithm in a tool called Chisel for deobfuscating C programs. Chisel is
written in just over 8000 lines of Python and uses GDB [26] for generating traces. In this section,
we describe a number of important optimizations used in our implementation.

Exploration of 𝑡-sketches. In Section 4, we compute the likelihood of a new 𝑡-sketch Θ′ given a 𝑡-
sketch Θ and hole expansion E𝑖 via the rules shown in Figure 6. For each expansion E𝑖 , Algorithm 2
adds all 𝑡-sketches produced by the rules to the queue. In practice, eagerly adding all 𝑡-sketches

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 349. Publication date: October 2024.

349:16 Mariano et al.

can be prohibitively expensive. We address this issue by discarding very low probability 𝑡-sketches.
In other words, if the probability of a 𝑡-sketch falls below a certain threshold, we do not add it
to the priority queue used in the GetNextCFS procedure. It should be noted that this decision
sacrifices the theoretical completeness guaranteed by our algorithm. However, in practice, we did
not encounter any cases in our experimental evaluation where this incompleteness resulted in
actually missing the desired control-flow sketch.

Memoizing synthesis results. Algorithm 1 iteratively adjusts the vocabulary 𝑉 when a sketch
cannot be completed. As presented, every time 𝑉 is adjusted, CompleteCFS resumes synthesis
from scratch. This significantly slows down the performance of Chisel when several vocabulary
sets are explored. We address this by memoizing all programs that have been enumerated. For each
completion of a basic block, we save the completion, execute the code in the blocks using the inputs
from the associated traces to derive values for each variable, and then save those variables whose
values agreed with the trace. When the vocabulary is adjusted, we check the cache for programs
that satisfy the variables in the vocabulary and return the smallest one. Otherwise, we resume
synthesis, skipping programs that are already in the cache.

GetNextVocabulary details. GetNextVocabulary internally tracks the vocabulary sets used for a
given t-sketch and, when called, returns the smallest vocabulary set that has not been used thus far.
However, many vocabulary sets are infeasible in that there is no valid completion of the CFS given
that set. For example, if the vocabulary set does not include the return variables then no completion
of the sketch can be a control-flow reduction of the obfuscated program. GetNextVocabulary
rules out these infeasible sets by only considering vocabulary sets that include the input variables,
the return variables and the variables in the guards of the CFS as those are expected to appear
in the deobfuscated program. Another way a vocabulary set can be infeasible is if it contains a
variable but none of its data dependencies. To avoid such cases, GetNextVocabulary tracks the data
dependencies for each variable across all the supplied traces and prunes any vocabulary set which
includes a variable but none of its dependencies.

Checking control flow reduction. Checking if the program 𝑃 is a control flow reduction of 𝑃 is a
highly nontrivial relational verification task. Rather than perform this expensive check for every
complete CFS, we instead only check if the synthesized program is a reduction with respect to the
provided traces. More precisely, for each trace 𝑡 in the input trace set, we check that𝑇𝑟𝑎𝑐𝑒 (𝑃, 𝑡 .𝜎𝑖𝑛)
is a trace extension of 𝑇𝑟𝑎𝑐𝑒 (𝑃, 𝑡 .𝜎𝑖𝑛). While such a check is unsound, we have not encountered a
case where our algorithm returned a program that was not a reduction.

6 Experiments
In this section, we present the results of an experimental evaluation that is designed to address the
following research questions:
RQ1. Can Chisel deobfuscate a variety of control-flow obfuscations?
RQ2. How does Chisel compare against other baselines?
RQ3. How does Chisel scale with respect to the size of the input program?
RQ4. How important is trace-informed decomposition in practice?
RQ5. Does Chisel generalize to new obfuscations?
RQ6. Can Chisel be useful for binary deobfuscation?

6.1 Benchmarks
To answer these research questions, we start with a set of 91 unobfuscated C programs used in
prior work on control-flow obfuscation [4–7]. Among these, 51 are classical algorithms covered in

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 349. Publication date: October 2024.

Control-Flow Deobfuscation Using Trace-Informed Compositional Program Synthesis 349:17

90.1%
6.6%

One Obfuscation

81.4%

5.5%
12.0%

Two Obfuscations

64.2%

8.0% 24.7%

Three Obfuscations
< 1 min
1° 5 min
5° 10 min
> 10 min
Timed Out

1.1%
1.1%

1.9%1.2%

Fig. 7. Percentage of programs for which Chisel finds a minimum control-flow reduction (per number of
obfuscations)

an undergraduate curriculum (e.g., sorting, search, greatest common divisor, hashing) and 40 are
artificial programs which use a diverse set of control flow constructs like for-loops, while-loops,
nested if-statments, etc.3 To evaluate our approach, we obfuscate these programs using six different
techniques: flattening, dead-code insertion, and basic-block splitting supported by Tigress [14]
and loop-unrolling, loop-fission, and irrelevant code insertion by C-Obfuscator.4 For Tigress, we
used parameters from the recommended recipes in the documentation. Please refer to the extended
version of this paper [46] for the detailed parameters we used to produce the benchmarks. Because
generating all combinations of obfuscations for all programs is infeasible, we obtain the obfuscated
benchmarks using the following methodology:
(1) For each original program, we obtain two obfuscated versions by randomly choosing two

obfuscations and applying each to the unobfuscated benchmark.
(2) We construct two additional benchmarks (per original program) by randomly choosing two

pairs of obfuscations and applying each to the unobfuscated benchmark.
(3) Finally, we obtain yet another two benchmarks by randomly choosing two triples of obfuscations

and applying each triple to the unobfuscated benchmark.
Following this procedure, we generate a total of 546 obfuscated benchmarks.

6.2 Experimental Set-up
Recall that Chisel requires the user to provide a set of inputs that can be used to generate traces.
Because dynamic traces are used to infer the original program’s control flow, Chisel’s ability to
successfully deobfuscate may depend on the quality of the inputs. For our evaluation, we generate
inputs using the KLEE symbolic execution engine [11], along with randomly sampled inputs. To
collect traces of programs, we use gdb’s stock Python API, which automates single-stepping in a C
program and extracting local variable valuations.

All of the experiments reported in the following subsections are run on a 56 core machine with
264 GB RAM, running Debian 12.5 For each benchmark, we use a time limit of 20 minutes to allow
completing the experiments in a reasonable amount of time.

6.3 Main Results
The results of our evaluation are summarized in Figure 7, which shows the distribution of synthesis
times for different number of obfuscations as a pie chart. Note that Chisel can successfully deob-
fuscate 93% of the benchmarks when only one obfuscation is applied. If we increase the number

3We note that the original benchmark set had 48 such programs but we removed 8 because they were duplicates.
4C-Obfuscator is built by the authors for the purpose of this evaluation due to a lack of open-source options. It will be made
publicly available upon publication of the paper.
5The large machine is used to run experiments in parallel – we have recorded comparable results on machines with 16GB of
RAM and 8 cores.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 349. Publication date: October 2024.

349:18 Mariano et al.

One Obfuscation Two Obfuscation Three Obfuscation

101

102

103

LO
C

16.57 16.63

10.94

47.00

341.33

1522.77

10.89 10.94 10.40

Deobfuscated LOC
Obfuscated LOC
Original LOC

Fig. 8. Average lines of code for programs before and and deobfuscation by Chisel

of obfuscations to 2 (resp. 3), Chisel can still reverse engineer the code for 88% (resp. 75%) of the
benchmarks within a 20 minute time limit.
To gain more intuition about the quality of the deobfuscated code, Figure 8 shows LOC in log

scale for (a) the obfuscated code, (b) the original program, and (c) the code synthesized by Chisel.
As is evident from this bar chart, Chisel almost always retrieves a program of comparable size to
the original program before obfuscation, even when the obfuscated programs contain thousands
of LOC. Furthermore, we analyzed the deobfuscated programs and found that 81% of “solved”
benchmarks are reduced to within 5 LOC of the source program, with an average reduction in size
of 63%, or 555 lines of code, compared to the obfuscated program.
Finally, we performed a manual analysis of the results. We found that most deobfuscated pro-

grams are minimum control-flow reductions. For those programs which are not, we found a
common pattern: original programs containing a single while loop with a fixed number of iterations
𝑁 . These programs can be synthesized by copying the body of the loop 𝑁 times. For example,
while(i < 3, i++) is equivalent to i++ repeated 3 times when 𝑖 = 0. In this case, because the
control-flow sketch of the while loop is larger than the control-flow sketch of the straight-line
program, we will synthesize the straight-line program first. We found the only time this occurs is
when there is a fixed-iteration loop whose body contains no control-flow operators.

Result for RQ1: Given a 20 minute time limit, Chisel can deobfuscate 86% of the
benchmarks. On average, Chisel results in an average reduction in LOC of 63% (which is
on average 555 LOC) compared to the obfuscated code. Furthermore, the deobfuscation
result is within 5 (resp. 10) LOC of the original program for 81% (resp. 92%) of the solved
benchmarks.

6.4 Baseline Comparison
In this section, we compare Chisel to three different baselines inspired by the deobfuscation
literature. First, we compare to Sketch [60], a CEGIS-based program synthesis tool in which
we can encode the deobfuscation problem. Second, given the recent successes of large language
models (LLMs) across a variety of tasks, including deobfuscation (e.g., [38]), we compare Chisel to
OpenAI’s GPT-4 [51]. Finally, we compare with opt, a binary optimization tool for LLVM bitcode
which has been shown to be effective for deobfuscation [25].

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 349. Publication date: October 2024.

Control-Flow Deobfuscation Using Trace-Informed Compositional Program Synthesis 349:19

Table 2. Comparison of Chisel with Sketch.

Sketch Comparison
Tool 1 Obfuscation 2 Obfuscations 3 Obfuscations

Sketch 0% 0% 0%
Sketch+CFS 56% 33% 32%

6.4.1 Sketch comparison. Sketch [59, 60] is a well-known program synthesis tool which uses
counterexample-guided inductive synthesis (CEGIS) to solve synthesis problems in a C-like language.
Among existing synthesis tools, we choose Sketch as a baseline because it is the only synthesizer
that has a C-like grammar. In contrast, evaluating against other SyGuS baselines requires writing a
custom C interpreter, which is a non-trivial task.

To compare against Sketch, we encode the deobfuscation task as a sketch-completion problem;
details of our encoding can be found in the extended version of this paper [46]. We compare Chisel
against two different uses of Sketch. In the first case, Sketch is provided the obfuscated program
as a specification and must synthesize the entire deobfuscation (as is the case for Chisel). We
refer to this variant as Sketch in our comparison. In the second case, we provide Sketch with
the ground-truth control flow skeleton and only require it to complete the given CFS. This is in
line with Sketch’s original usage scenario where the user provides a sketch as input – we refer to
this variant as Sketch+CFS. However, please note that Sketch+CFS solves a much easier problem
compared to Chisel.

Benchmarks.We evaluate Sketch on a subset of the original benchmarks for two reasons: First,
to evaluate Sketch-CFS, we need access to a CFS (including the trace decomposition), as the trace
decomposition defines the specification for each subtask provided to Sketch. However, note that
we do not have access to such a ground truth CFS unless Chisel produces them6; thus, we restrict
ourselves to the subset of benchmarks for which Chisel produces a CFS. Second, many of the
benchmarks contain C features that are not supported natively in Sketch, so, to allow for a fair
comparison, we restrict ourselves to those benchmarks that only contain Sketch-supported features.
Hence, for this evaluation, we only consider a total of 65 benchmarks.

Results. Table 2 shows the results of this experiment for Sketch; here, we do not report the results
for Chisel because it solves all of these benchmarks. As shown in Table 2, Sketch cannot solve
any of the benchmarks without having access to the control flow skeleton. However, even when it
is provided the CFS, it can only solve 41% of the benchmarks overall. Furthermore, Sketch solves
each benchmark in an average of 77.01 seconds as compared to Chisel which takes only 63.38
seconds on average.7 We believe Chisel outperforms Sketch even when it is provided the CFS
because Chisel can prune many CFS completions using trace-based decomposition unlike Sketch.

6.4.2 Large Language Model Comparison. Given the recent successes of large language models
(LLMs) across a variety of tasks, we next compare Chisel to OpenAI’s GPT-4 [51]. To perform
this comparison, we sample 150 benchmarks from our benchmark set (50 from each of 1, 2, and 3
obfuscations). For each benchmark, we ask GPT-4 to deobfuscate the program and take the top 3

6Obtaining the CFS from the original program is difficult because applying obfuscation alters program statements of a trace
in a non-obvious way, preventing us from directly associating each obfuscated statement to its ground-truth counterpart.
7As with all experiments we have reported, both Sketch and Chisel were run on the same machine with the same specs for
this comparison.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 349. Publication date: October 2024.

349:20 Mariano et al.

Table 3. Comparison of Chisel with GPT-4.

LLM Comparison

Tool 1 Obfuscation 2 Obfuscations 3 Obfuscations
Equiv Minimum Equiv Minimum Equiv Minimum

GPT-4 72% 54% 58% 46% 58% 46%
Chisel 94% 94% 92% 92% 80% 80%

results.8 When developing our prompting strategy for the ChatGPT comparison, we experimented
with different numbers and types of prompts and chose the strategy that performed the best across
a small set of representative examples from our benchmark set. The specific prompt we used can
be found in the extended version of this paper [46].
The results of this experiment are summarized in Table 3, which shows the percentage of

benchmarks for which the deobfuscation approach returned (1) an equivalent program and (2) a
minimum control flow reduction. As shown, Chisel finds a minimum program much more often
than GPT-4 (34-46% more benchmarks depending on the number of obfuscations). GPT-4 is able to
find an equivalent (but not necessarily minimal program) in a high number of cases (72%) for 1
obfuscation, but this drops significantly with multiple obfuscations.
To better understand the performance of GPT-4, we manually investigated the programs it

produced. In 80% of cases, GPT-4 could at least produce compilable code – code that could not
compile usually contained type errors or left off return values. In cases where GPT-4 produced an
equivalent but non-minimum program, it was often that some (but not all of) the obfuscations had
been removed; in fact, it was not unusual for GPT-4 to simply copy the obfuscated code. In cases
where GPT-4 produced the minimum program, we noticed that the program usually corresponded
to common programming assignments like factorial or bubblesort (as opposed to one of the artificial
programs from the benchmark set). This observation suggests that our results may slightly overstate
the abilities of GPT-4 for deobfuscation, given that it seems to do best on the programs which
(likely) occur most frequently in its training data.

6.4.3 Compiler Optimization Comparison. Compiler optimizations have been found to be effective
for code deobfuscation in a variety of domains [25, 28, 41, 72]. In this experiment, we compare
Chisel to opt, LLVM’s binary optimizer. Because Chisel operates at the source-code level while
opt simplifies LLVM bitcode, we perform the comparison by compiling the results of Chisel and
comparing the resulting binary size. Table 4 shows the results of this experiment. In general, we
can see that binaries produced from Chisel are significantly smaller (30% smaller binary size on
average) and are much closer in size to the compiled minimum program.
To give further context to these results, we sampled 30 benchmarks and used the Hex-Rays

decompiler [29] to compare the results of opt and Chisel at the source-code level. For those
benchmarks sampled, opt could produce the minimum reduction in only 7 cases (23%) as compared
to Chisel which can find the minimum reduction in all 30 cases. Furthermore, decompiled code
from Chisel was on average 150 LOC (or about 42%) smaller as compared to decompiled code from
opt. On manual inspection of the decompiled code from opt, we found that in most cases most of
the obfuscations still remained.

8We tested with between the top 1 and 10 results on a small sample of the benchmarks and found no difference with more
than the top 3 results.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 349. Publication date: October 2024.

Control-Flow Deobfuscation Using Trace-Informed Compositional Program Synthesis 349:21

Table 4. Comparison of Chisel with LLVM opt.

Compiler Optimization Comparison

Measurement Chisel opt
mean median mean median

Binary Size (in KB) 4.5 4.1 6.4 5.9
Size Compared to Minimum Program 1.1 1.0 1.5 1.4

6.5 Related Tool Comparison
In addition to the general deobfuscation baselines compared to in Section 6.4, we also compare
to Yadegari et al. [68] which construct a simplified control-flow graph (CFG) from a trace of a
control-flow obfuscated program. In their algorithm, Yadegari et al. apply simplification rules to
the input trace, construct a CFG based on that simplified trace, and apply transformations to the
CFG to further simplify it. This is conceptually very different from our synthesis-based approach
which uses traces as a mechanism for pruning the search space.

Thus, to compare and contrast these different approaches, we perform a small comparison
with their tool on 5 simple benchmarks which Chisel can solve in seconds. The benchmarks are
obfuscated with 3 different control-flow extensions: branch insertion, dead-code insertion (via
opaque predicates), and flattening. It should be noted that a key difference between Chisel and
the tool from Yadegari et al. is that their tool uses a single trace to construct a simplified program
while Chisel uses multiple. Thus, for each example, we tried each trace used by Chisel as an input
to the tool from Yadegari et al. and chose whichever produced the best result.

We found that their implementation does not produce an equivalent program on any benchmark
we tried. For instance, we considered a simple program that returns the parity of an integer
and obfuscated it by adding irrelevant branches. Not only does Yadegari’s tool not remove the
comparison instructions introduced by obfuscation, but it also incorrectly removes the parity check
computation. This trend holds for every benchmark we tested, i.e., Yadegari’s tool never removed
all of the obfuscated code nor did it ever even produce equivalent code. In the extended version of
this paper [46], we give a full explanation of each of the benchmarks considered and how the tool
from Yadegari et al. failed to deobfuscate that benchmark.
We conjecture two reasons as to why the tool from Yadegari et al. performed so poorly on

these simple benchmarks. First, as mentioned above, their work makes the strong assumption that
an equivalent program can be recovered from a single trace. We believe this assumption is too
strong in many cases, especially when programs contain complex looping and conditional behavior.
Chisel overcomes this limitation by considering multiple traces at once while deobfuscating.
Second, the tool from Yadegari et al. was analyzed and evaluated on virtualization and return-
oriented-programming (ROP) obfuscations, which have very different behavior from the control-
flow extensions considered by Chisel. For instance, branch insertion statically adds extra control-
flow into a program, while virtualization encodes a program into a new IR which is dynamically

decoded and executed at runtime. It is not surprising that an algorithm designed to deobfuscate
techniques like virtualization and ROP might not be as effective when facing the static control-flow
extensions considered in this paper.

While this evaluation is not a completely apples-to-apples comparison, we believe it sheds light
on the different intended usage scenarios of these tools. In particular, our comparison indicates
that Chisel may be more effective for static obfuscations like branch insertion while the tool from
Yadegari et al. can handle obfuscations like virtualization and ROP which are out of the scope of
obfuscations considered by Chisel. Because of this, we believe it is feasible that the two techniques

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 349. Publication date: October 2024.

349:22 Mariano et al.

0-9 10-19 20-29 30-39 40-49 > 50
of Control-Flow Operators

0

20

40

60

80

100

%
D

eo
bf

us
ca

te
d

(a) Percentage of Synthetic Program Deobfus-
cated by Control-Flow Complexity

0-9 10-19 20-29 30-39 40-49 > 50
of Control-Flow Operators

10−1

100

101

M
ed

ia
n

Ti
m

e
(s

ec
)

(b) Median Deobfuscation Time of Synthetic Pro-
grams by Control-Flow Complexity

Fig. 9. Chisel performance by code complexity

Table 5. Highlights from scalability evaluation.

Deobfuscation Highlights
Max # ITE 33,996 Max # Loops 6,556
Max LOC 147,923 Max # of Variables 4,384

could be combined to handle a wider variety of obfuscations than those considered by either tool
individually.

Result for RQ2: Chisel is able to deobfuscate a significantly larger portion of the bench-
marks compared to three different baselines, including (1) Sketch, a program synthesis
tool, (2) GPT-4, a state-of-the-art large language model, and (3) LLVM’s binary opti-
mizer. Chisel is also able to handle obfuscations like branch insertion which are not well
supported by Yadegari et al. [68], a state-of-the-art control-flow deobfuscator.

6.6 Scalability Evaluation
To stress test the scalability of our approach, we perform an additional experiment on 50 synthetic
benchmarks that intentionally vary in size and complexity. In more detail, we sampled 10 programs
for each AST-size of 5, 10, 15, 20, and 30 and obfuscate these synthetic source programs using the
exact same methodology described in Section 6.1. To evaluate the scalability of Chisel, we plot the
number of benchmarks solved and time taken to solve benchmarks vs. the control-flow complexity
of the program, measured as the number of control-flow operators in the program.9

The results of this evaluation are shown in Figures 9a and 9b. As expected, the more complicated
the program, the fewer benchmarks Chisel can solve. Similarly, the more complicated the program,
the slower the deobfuscation. However, it should be noted that Chisel can still solve over half of
benchmarks containing between 40 and 50 control-flow operators, which comprise programs of
thousands of lines of code. Furthermore, the largest programs that Chisel can deobfuscate contain
up to 33,996 if statements, 6,556 loops, and 147,923 lines of code.

9It should be noted that this is a better metric of complexity than LOC as some obfuscations create large amounts of dead
code that are easily eliminated.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 349. Publication date: October 2024.

Control-Flow Deobfuscation Using Trace-Informed Compositional Program Synthesis 349:23

0 200 400 600 800 1000 1200

Running Total (sec)

0

100

200

300

400

#
of

Pr
og

ra
m

s
D

eo
bf

us
ca

te
d

Number of Programs Deobfuscated by Time

Chisel
Chisel-NoRegex
Chisel-NoDecomp
Chisel-NoTraceExtend

Fig. 10. Comparison of Chisel and ablations.

Result for RQ3: Given a 20-minute timeout,Chisel is able to deobfuscate programs
containing up to 6,556 loops, up to 33,996 conditionals and more than one hundred
thousand lines of code.

6.7 Ablation Study
Next, we evaluate the relative importance of the key ideas underlying our approach through an
ablation study. Specifically, we consider the following variants of Chisel:
• Chisel-NoRegex: This variant does not use regex pattern matching to assign scores to 𝑡-sketches.
It considers all 𝑡-sketches to be equally likely and enumerates them according to size.
• Chisel-NoDecomp: This variant does not performs trace decomposition. As a result, it cannot
complete holes in the sketch in a modular way.
• Chisel-NoTraceExtend: This variant is identical to Chisel except it does not use trace extensi-
bility for pruning the search space. This variant essentially corresponds to removing the call to
TraceExtensible in Algorithm 4.
The results of this ablation study are presented as a cumulative distribution function (CDF) in Fig-

ure 10 where the 𝑥-axis shows cumulative running time and the 𝑦-axis shows the number of bench-
marks solved. Chisel outperforms all ablations – the next best ablation (Chisel-NoTraceExtend)
can solve 85% of the benchmarks solved by Chisel, while the other two solve only 28% and 6%
respectively.

Result for RQ4: Trace-informed compositional synthesis is crucial for the effective-
ness of our approach: Without using traces for CFS inference, Chisel solves 94% fewer
benchmarks, and, without decomposition, Chisel solves 72% fewer benchmarks.

6.8 Generalizability of Chisel
To assess if Chisel can be applied to new obfuscation techniques, we performed two experiments.
In the first, we chose an obfuscation technique from the literature called the branch insertion
transformation [15] which is different from all obfuscations considered when creating Chisel.
The branch insertion transformation statically replaces each basic block 𝐵 in the program with a
non-deterministic choice between two new basic-blocks 𝐵1 and 𝐵2, each of which is an obfuscated
version of 𝐵. A detailed description of the technique can be found in the extended version of this

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 349. Publication date: October 2024.

349:24 Mariano et al.

paper [46]. We used this technique to obfuscate all 91 benchmarks and found that Chisel could
find the minimum program for 85 of them (93%) in under 20 minutes.
In the second experiment, we disabled each trace-matching rule from Table 1 individually to

assess their impact on the performance of Chisel per obfuscation type – if a rule is general, one
would expect its absence to affect performance for multiple obfuscation types. We found that the
average difference in performance between obfuscation types when disabling a rule was 8.4%.
In other words, disabling any of our rules leads to a similar decrease in performance across all
obfuscation types, indicating the rules generalize beyond the specific obfuscations considered in
this evaluation. The full results can be seen in the extended version of this paper [46].

Result for RQ5: Chisel is able to deobfuscate 93% of the programs obfuscated with
the branch insertion transformation which was not considered when developing the
tool. Furthermore, disabling any trace-matching rule results in a performance decrease
across most of the obfuscation types we consider, indicating they are not overfit to handle
specific obfuscations.

6.9 Binary Evaluation
Our experiments in the preceding sections demonstrate that Chisel can be useful across a variety
of obfuscations and programs. However, all of these evaluate Chisel’s usefulness on source-level
deobfuscation, while many deobfuscation tasks are at the binary level. To address this concern, we
evaluate Chisel’s binary deobfuscation capabilities by combining it with IDA-Pro [29], a state-of-
the-art decompiler. To do this, we first compiled 60 random obfuscated benchmarks that Chisel
was able to solve and then used IDA-Pro to decompile them. As noted by [42], most decompilers
(IDA-Pro included) do not produce compilable code. Thus, we perform a number of small changes
to the output of the decompiler, similar to those described in [42], such as adding back in necessary
keywords, adjusting illegal variable names, and removing keywords that are not supported by gcc.
A full description of the changes can be found in the extended version of this paper. To recompile
the programs, we use gcc with default options. Finally, we used Chisel to deobfuscate the resulting
program with a 20-minute timeout. For these benchmarks, Chisel finds the minimum program for
81% and finds a program smaller than the original for 91%.

Failure analysis.We conducted a manual analysis of the remaining 9% of programs for which
Chisel could not find a smaller version of the obfuscated program and found that all failures were
due to one of two different code changes introduced by the decompiler. The first is that some
assignments are merged into other expressions – for instance, x < y; x++ would be merged into
x++ < y. Chisel does not currently support this form of updating in its trace collection. When
these are split out into separate statements (as can be achieved with lightweight static analysis)
Chisel succeeds on these benchmarks. The second cause of failures is that the decompiler splits a
single variable into multiple copies of the same variable. This change causes some of our regular
expression matching rules to fail (as a guard may appear using various forms of the same variable),
slowing Chisel’s deobfuscation process. Again, however, we believe this could be easily resolved
via lightweight static analysis to merge duplicate variables.

Result for RQ6: When combined with a state-of-the-art decompilation technique,
Chisel was able to successfully deobfuscate 55 out of 60 obfuscated binaries, resulting in
an average LOC reduction of 85%.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 349. Publication date: October 2024.

Control-Flow Deobfuscation Using Trace-Informed Compositional Program Synthesis 349:25

7 Limitations
Our experiments demonstrate that Chisel is able to deobfuscate a wide variety of control-flow
obfuscations across different programs, even when multiple obfuscations are applied. However,
there are some limitations to both our approach, as well as our prototype, which we discuss next.

First, our method relies on dynamic traces for deobfuscation. We use dynamic analysis because
static analyses are notoriously ineffective for reasoning about obfuscated code [16, 50]. We are
not alone in making this decision – a number of deobfuscation techniques rely on dynamic traces
[9, 17, 25, 67, 68]. However, it should be noted that this decision is a tradeoff. While it avoids many
of the pitfalls faced by static analyses, low coverage can reduce the speed of our synthesis algorithm
as it uses traces to speed up the synthesis process and reduce the search space. Although trace
coverage can impact our algorithm’s ability to retrieve the complete deobfuscated program, per
Theorem 4.2, it can always eventually recover the portions of the original program exercised by the
traces. This is a valuable property for real-world reverse engineering, where perfect deobfuscation
is not always necessary.
Second, programs generated by Chisel intentionally do not contain gotos (as they often make

code less readable) and only use while for looping (with break statements). Hence, if the orig-
inal program contains alternative looping mechanisms such as a for loop, the code synthe-
sized by Chisel would instead have a while loop. Similarly, switch statements deobfuscate to
if-then-else statements.
Third, our implementation uses testing (rather than full-fledged verification) to check that the

deobfuscated program is equivalent to the obfuscated one, which means it is possible for Chisel to
produce a program that is not equivalent. While this outcome is certainly possible, we found no
instances of this when manually reviewing the results of our experiments, which included hundreds
of deobfuscated programs.
Finally, Chisel only handles control-flow extensions, which do not include some well-known

control-flow obfuscations, including virtualization [66], return-oriented programming [10], and
exception-based obfuscations [69]. In addition, popular non-control-flow based obfuscations like
mixed boolean arithmetic [77] are not supported by Chisel. However, there is no fundamental
reasonwhyChisel cannot be used in tandemwith techniques designed to handle such obfuscations.

8 Related Work
Chisel is part of a long line of work on program deobfuscation. Broadly speaking, prior work
can be bucketed into two categories depending on whether they target data-flow [9, 18, 77] or
control-flow [37] obfuscations. Recall that data-flow obfuscations focus on obfuscating constants
and expressions in the program, whereas control-flow obfuscations focus on complicating the
overall control flow of the program. Chisel falls under the latter category, so we first describe prior
work on control-flow debofuscation.

Control-flow deobfuscation. In recent years, many control flow deobfuscators have been proposed
that target specific control flow deobfuscations or limited combinations of them [22, 70, 71]. For
example, the ReDex code optimizer [71] and Deoptfuscater [70] remove target variable renaming,
call indirection, and opaque predicates in Android applications. CaDeCFF [22] uses data-flow anal-
ysis and tree-based code generation to deobfuscate flattening. DiANa [34] combines taint analysis
and symbolic execution to deobfuscate Android binaries obfuscated using O-LLVM [33]. BinRec
[1] deobfuscates a binary by lifting dynamic traces of the binary to an intermediate representation
that can be lowered back into a "recovered" binary after simplification. Their approach is similar
in spirit to compiler optimization for code deobfuscation [25, 28, 41, 72] which we compare to in
Section 6.4.3. Unlike these prior works, Chisel can handle a broad class of control flow obfuscations

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 349. Publication date: October 2024.

349:26 Mariano et al.

including arbitrary combinations of them. One prior work that also targets a broad class of control
flow obfuscations is Yadegari et al., [68]. They perform dynamic taint analysis to identify control
dependencies, use the dependencies to apply semantics-preserving simplifications, and finally
construct a control-flow graph (CFG) representing the deobfuscated code. However, the effective-
ness of this technique is dependent on manually-crafted simplification rules that may or may not
apply for some types of obfuscations. In contrast to their approach, our method uses syntax-guided
synthesis rather than rule-based simplification. Please see Section 6.5 for a comparison between
their approach and Chisel. Additionally, please see the extended version of this paper [46] for a
detailed discussion on our attempts to evaluate against other control-flow deobfuscators, and why
we believe Chisel will outperform them.

Trace-guided synthesis. A number of synthesizers use traces to guide their search procedure
[20, 30, 45, 52, 54, 58, 74], but they do so in different ways from Chisel. In particular, prior work
on recursive program synthesis requires users to provide “recursion traces” to effectively augment
the set I/O examples for the synthesis task. For example, Myth [52] requires users to provide a
complete trace of the call stack of the desired program for a given I/O example, and Syrup [74]
utilizes a novel version-space algebra based on recursion traces to compactly represent solutions
to recursive synthesis problems. Traces are also used in programming from demonstration tasks
[20, 54] where a program needs to be synthesized that matches a trace of actions performed
by the expert. For example, Patton et al [54], use traces to synthesize robot controllers. Their
idea is to view demonstrations as positive string examples over a language and infer a program
sketch by generalizing from those positive examples to a regular expression. They complete the
inferred sketches using LLM guidance. Prior work by Mariano et al [45] leverages traces to transpile
imperative to functional programs. Similar to Chisel, they use traces to prune infeasible partial
programs using a notion of trace-compatibility, which is similar to our trace-extensibility. Their
notion of trace compatibility requires agreement between values of shared expressions in a pair of
so-called cognate grammars, whereas our notion of trace extensibility requires agreement between
a subset of the variables. However, unlike [45], we additionally use traces to guide the generation of
control flow skeletons and decompose the target program into independent sub-problems. Finally,
Konure [57] uses active learning to infer models of applications which access relational databases.
Like Chisel, their approach observes database interactions (a sort of trace) and uses program
synthesis to generate a matching program from those interactions. However, unlike Chisel, which
is designed for the problem of deobfuscation, Konure’s DSL and inference algorithm are designed
specifically for database applications.

Compositional synthesis.Many synthesizers try to decompose a high level synthesis task into
independent subtasks to improve scalability [2, 3, 24, 27, 52, 55, 75]. For example, 𝜆2 [24] uses
the semantics of list combinators to infer new I/O examples for sub-problems and type-directed
synthesizers like Synquid [55] propagate goal types for holes in the partial program which, in many
cases, can be solved independently. CLIS [75] performs UDF to SQL translation using a notion of
lazy inductive synthesis where each iteration of the synthesis procedure generates increasingly hard
synthesis sub-problems given a dataflow graph of the UDF program. Unlike all these approaches,
our work performs modular synthesis using traces from the obfuscated program along with a
candidate control-flow sketch.

Synthesis for deobfuscation. We are not the first to apply program synthesis techniques to
deobfuscate programs. Syntia [9] uses SMT-solving and stochastic program synthesis to deobfuscate
Mixed Boolean-Arithmetic (MBA) expressions [77]. Xyntia [47] proposes a new AI-based blackbox
method for deobfuscating MBA expressions. AutoSimpler [76] deobfuscates MBA expressions via a

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 349. Publication date: October 2024.

Control-Flow Deobfuscation Using Trace-Informed Compositional Program Synthesis 349:27

heuristic Nested Monte Carlo Search. QSynth [18] deobfuscates MBA expressions and virtualization
expressions using enumerative synthesis. The work described in [32] deobfuscates loop-free code
by reducing to SMT solving. These deobfuscators target either data-flow obfuscations or straight
line programs, and thus are not applicable to our setting where entire functions with loops and
conditionals need to be synthesized.

9 Conclusion and Future Work
In this paper, we proposed a new technique for reverse engineering control-flow obfuscations using
program synthesis. We have performed an extensive empirical evaluation of our tool, Chisel, on
more than 500 obfuscated programs, including those that have been obfuscated using multiple
different techniques. Our evaluation shows that Chisel is able to successfully recover the original
program in 86% of the cases. We compare Chisel against three different general deobfuscation
baselines, including a program synthesizer, a state-of-the-art LLM, and a binary optimizer, and
show that Chisel is much more effective at the deobfuscation task. We also compare Chisel with a
state-of-the-art control-flow deobfuscator from the literature [68] and conclude that their approach
is potentially complimentary with ours as they focus on a different set of obfuscation techniques
than those considered by Chisel.

Acknowledgments
This works was supported in part by National Science Foundation grant 2040206. This work was
conducted in a research group supported by NSF awards CCF-1762299, CCF-1918889, CNS-1908304,
CCF-1901376, CNS-2120696, CCF-2210831, and CCF-2319471.

References
[1] Anil Altinay, Joseph Nash, Taddeus Kroes, Prabhu Rajasekaran, Dixin Zhou, Adrian Dabrowski, David Gens, Yeoul

Na, Stijn Volckaert, Cristiano Giuffrida, Herbert Bos, and Michael Franz. 2020. BinRec: dynamic binary lifting and
recompilation. In Proceedings of the Fifteenth European Conference on Computer Systems (Heraklion, Greece) (EuroSys
’20). Association for Computing Machinery, New York, NY, USA, Article 36, 16 pages. https://doi.org/10.1145/3342195.
3387550

[2] Rajeev Alur, Pavol Černý, and Arjun Radhakrishna. 2015. Synthesis Through Unification. In Computer Aided Verification,
Daniel Kroening and Corina S. Păsăreanu (Eds.). Springer International Publishing, Cham, 163–179. https://doi.org/10.
1007/978-3-319-21668-3_10

[3] Rajeev Alur, Arjun Radhakrishna, and Abhishek Udupa. 2017. Scaling Enumerative Program Synthesis via Divide and
Conquer. In Tools and Algorithms for the Construction and Analysis of Systems, Axel Legay and Tiziana Margaria (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 319–336. https://doi.org/10.1007/978-3-319-21668-3_10

[4] Sebastian Banescu. 2017. Characterizing the strength of software obfuscation against automated attacks. Ph. D. Disserta-
tion. Technische Universität München.

[5] Sebastian Banescu, Christian Collberg, Vijay Ganesh, Zack Newsham, and Alexander Pretschner. 2016. Code Ob-
fuscation against Symbolic Execution Attacks. In Proceedings of the 32nd Annual Conference on Computer Security

Applications (Los Angeles, California, USA) (ACSAC ’16). Association for Computing Machinery, New York, NY, USA,
189–200. https://doi.org/10.1145/2991079.2991114

[6] Sebastian Banescu, Christian Collberg, and Alexander Pretschner. 2017. Predicting the Resilience of Obfuscated Code
Against Symbolic Execution Attacks via Machine Learning.. In USENIX Security Symposium. USENIX, USA, 661–678.

[7] Sebastian Banescu, Martín Ochoa, and Alexander Pretschner. 2015. A framework for measuring software obfuscation
resilience against automated attacks. In 2015 IEEE/ACM 1st International Workshop on Software Protection. IEEE, IEEE,
USA, 45–51.

[8] Chandan Kumar Behera and D Lalitha Bhaskari. 2015. Different obfuscation techniques for code protection. Procedia
Computer Science 70 (2015), 757–763.

[9] Tim Blazytko, Moritz Contag, Cornelius Aschermann, and Thorsten Holz. 2017. Syntia: Synthesizing the Semantics of
Obfuscated Code. In USENIX Security Symposium. USENIX, USA, 643–659.

[10] Pietro Borrello, Emilio Coppa, Daniele Cono D’Elia, and Camil Demetrescu. 2019. The ROP needle: hiding trigger-based
injection vectors via code reuse. In Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing (Limassol,

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 349. Publication date: October 2024.

https://doi.org/10.1145/3342195.3387550
https://doi.org/10.1145/3342195.3387550
https://doi.org/10.1007/978-3-319-21668-3_10
https://doi.org/10.1007/978-3-319-21668-3_10
https://doi.org/10.1007/978-3-319-21668-3_10
https://doi.org/10.1145/2991079.2991114

349:28 Mariano et al.

Cyprus) (SAC ’19). Association for Computing Machinery, New York, NY, USA, 1962–1970. https://doi.org/10.1145/
3297280.3297472

[11] Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE: Unassisted and Automatic Generation of High-
Coverage Tests for Complex Systems Programs. In Proceedings of the 8th USENIX Conference on Operating Systems

Design and Implementation (San Diego, California) (OSDI’08). USENIX Association, USA, 209–224.
[12] Jien-Tsai Chan and Wuu Yang. 2004. Advanced obfuscation techniques for Java bytecode. Journal of Systems and

Software 71, 1 (2004), 1–10. https://doi.org/10.1016/S0164-1212(02)00066-3
[13] Christian Collberg. 2023. Flatten. https://tigress.wtf/flatten.html. Accessed: 2023-04-10.
[14] Christian Collberg. 2023. The Tigress C Obfuscator. https://tigress.wtf/. Accessed: 2023-04-09.
[15] Christian Collberg, Clark Thomborson, and Douglas Low. 1997. A taxonomy of obfuscating transformations. Technical

Report. Department of Computer Science, The University of Auckland, New Zealand.
[16] Christian Collberg, Clark Thomborson, and Douglas Low. 1998. Manufacturing Cheap, Resilient, and Stealthy

Opaque Constructs. In Proceedings of the 25th ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages (San Diego, California, USA) (POPL ’98). Association for Computing Machinery, New York, NY, USA,
184–196. https://doi.org/10.1145/268946.268962

[17] Kevin Coogan, Gen Lu, and Saumya Debray. 2011. Deobfuscation of Virtualization-Obfuscated Software A Semantics-
Based Approach. In Proceedings of the 18th ACM Conference on Computer and Communications Security. ACM, USA,
275–284. https://doi.org/10.1145/2046707.2046739

[18] Robin David, Luigi Coniglio, and Mariano Ceccato. 2020. QSynth - A Program Synthesis based approach for Binary
Code Deobfuscation. Proceedings 2020 Workshop on Binary Analysis Research 0, 0 (2020), 42–49.

[19] Stephen Dolan. 2013. mov is Turing-complete. https://drwho.virtadpt.net/files/mov.pdf
[20] Rui Dong, Zhicheng Huang, Ian Iong Lam, Yan Chen, and Xinyu Wang. 2022. WebRobot: web robotic process

automation using interactive programming-by-demonstration. In Proceedings of the 43rd ACM SIGPLAN International

Conference on Programming Language Design and Implementation (San Diego, CA, USA) (PLDI 2022). Association for
Computing Machinery, New York, NY, USA, 152–167. https://doi.org/10.1145/3519939.3523711

[21] Weiyu Dong, Jian Lin, Rui Chang, and Ruimin Wang. 2022. CaDeCFF: Compiler-Agnostic Deobfuscator of Control
Flow Flattening. In Internetware 2022: 13th Asia-Pacific Symposium on Internetware, Hohhot, China, June 11 - 12, 2022.
ACM, China, 282–291. https://doi.org/10.1145/3545258.3545269

[22] Weiyu Dong, Jian Lin, Rui Chang, and Ruimin Wang. 2022. CaDeCFF: Compiler-Agnostic Deobfuscator of Control
Flow Flattening. In Proceedings of the 13th Asia-Pacific Symposium on Internetware (Hohhot, China) (Internetware ’22).
Association for Computing Machinery, New York, NY, USA, 282–291. https://doi.org/10.1145/3545258.3545269

[23] Stephen Drape. 2010. Intellectual property protection using obfuscation.
[24] John Feser, Swarat Chaudhuri, and Isil Dillig. 2015. Synthesizing Data Structure Transformations from Input-Output

Examples. ACM SIGPLAN Notices 50 (06 2015), 229–239. https://doi.org/10.1145/2813885.2737977
[25] Peter Garba and Matteo Favaro. 2019. SATURN - Software Deobfuscation Framework Based on LLVM. CoRR

abs/1909.01752 (2019), 27–38. arXiv:1909.01752 http://arxiv.org/abs/1909.01752
[26] GNU. 2023. GDB: The GNU Project Debugger. https://www.sourceware.org/gdb/. Accessed: 2023-04-09.
[27] Sankha Narayan Guria, Jeffrey S. Foster, and David Van Horn. 2021. RbSyn: Type- and Effect-Guided Program

Synthesis. In Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and

Implementation (Virtual, Canada) (PLDI 2021). Association for Computing Machinery, New York, NY, USA, 344–358.
https://doi.org/10.1145/3453483.3454048

[28] Adrian Herrera. 2020. Optimizing Away JavaScript Obfuscation. In 2020 IEEE 20th International Working Conference on

Source Code Analysis and Manipulation (SCAM). IEEE, USA, 215–220. https://doi.org/10.1109/SCAM51674.2020.00029
[29] SA Hex-Rays. 2013. Hex-Rays Decompiler.
[30] Martin Hofmann. 2010. IGOR2 - an analytical inductive functional programming system: tool demo. In Proceedings

of the 2010 ACM SIGPLAN Workshop on Partial Evaluation and Program Manipulation (Madrid, Spain) (PEPM ’10).
Association for Computing Machinery, New York, NY, USA, 29–32. https://doi.org/10.1145/1706356.1706364

[31] Anusthika Jeyashankar. 2023. Most Common Malware obfuscation Techniques. https://www.socinvestigation.com/
most-common-malware-obfuscation-techniques/. Accessed: 2023-04-09.

[32] Susmit Jha, Sumit Gulwani, Sanjit A. Seshia, and Ashish Tiwari. 2010. Oracle-Guided Component-Based Program
Synthesis. In Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering - Volume 1 (Cape
Town, South Africa) (ICSE ’10). Association for Computing Machinery, New York, NY, USA, 215–224. https://doi.org/
10.1145/1806799.1806833

[33] Pascal Junod, Julien Rinaldini, Johan Wehrli, and Julie Michielin. 2015. Obfuscator-LLVM – Software Protection for
the Masses. In 2015 IEEE/ACM 1st International Workshop on Software Protection. IEEE, USA, 3–9. https://doi.org/10.
1109/SPRO.2015.10

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 349. Publication date: October 2024.

https://doi.org/10.1145/3297280.3297472
https://doi.org/10.1145/3297280.3297472
https://doi.org/10.1016/S0164-1212(02)00066-3
https://tigress.wtf/flatten.html
 https://tigress.wtf/
https://doi.org/10.1145/268946.268962
https://doi.org/10.1145/2046707.2046739
https://drwho.virtadpt.net/files/mov.pdf
https://doi.org/10.1145/3519939.3523711
https://doi.org/10.1145/3545258.3545269
https://doi.org/10.1145/3545258.3545269
https://doi.org/10.1145/2813885.2737977
https://arxiv.org/abs/1909.01752
http://arxiv.org/abs/1909.01752
 https://www.sourceware.org/gdb/
https://doi.org/10.1145/3453483.3454048
https://doi.org/10.1109/SCAM51674.2020.00029
https://doi.org/10.1145/1706356.1706364
https://www.socinvestigation.com/most-common-malware-obfuscation-techniques/
https://www.socinvestigation.com/most-common-malware-obfuscation-techniques/
https://doi.org/10.1145/1806799.1806833
https://doi.org/10.1145/1806799.1806833
https://doi.org/10.1109/SPRO.2015.10
https://doi.org/10.1109/SPRO.2015.10

Control-Flow Deobfuscation Using Trace-Informed Compositional Program Synthesis 349:29

[34] Zeliang Kan, Haoyu Wang, Lei Wu, Yao Guo, and Guoai Xu. 2019. Deobfuscating Android Native Binary Code. In 2019

IEEE/ACM 41st International Conference on Software Engineering: Companion Proceedings (ICSE-Companion). IEEE, USA,
322–323. https://doi.org/10.1109/ICSE-Companion.2019.00135

[35] Seoyeon Kang, Jeongwoo Kim, Eun-Sun Cho, and Seokwoo Choi. 2022. Program Synthesis-based Simplification of
MBA Obfuscated Malware with Restart Strategies. In Proceedings of the 2022 ACM Workshop on Research on Offensive

and Defensive Techniques in the Context of Man At The End (MATE) Attacks (Los Angeles, CA, USA) (Checkmate ’22).
Association for Computing Machinery, New York, NY, USA, 13–18. https://doi.org/10.1145/3560831.3564258

[36] Sangjun Ko, Jusop Choi, and Hyoungshick Kim. 2017. COAT: Code Obfuscation Tool to Evaluate the Performance of
Code Plagiarism Detection Tools. In 2017 International Conference on Software Security and Assurance (ICSSA). IEEE,
USA, 32–37. https://doi.org/10.1109/ICSSA.2017.29

[37] Renuka Kumar and Anjana Mariam Kurian. 2018. A Systematic Study on Static Control Flow Obfuscation Techniques
in Java. ArXiv abs/1809.11037 (2018), 1–20.

[38] Marie-Anne Lachaux, Baptiste Roziere, Marc Szafraniec, and Guillaume Lample. 2021. Dobf: A deobfuscation pre-
training objective for programming languages. Advances in Neural Information Processing Systems 34 (2021), 14967–
14979.

[39] Jaehyung Lee and Woosuk Lee. 2023. Simplifying Mixed Boolean-Arithmetic Obfuscation by Program Synthesis
and Term Rewriting. In Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications Security (,
Copenhagen, Denmark,) (CCS ’23). Association for Computing Machinery, New York, NY, USA, 2351–2365. https:
//doi.org/10.1145/3576915.3623186

[40] Yuhan Li, BinWen, andHaixiao Zheng. 2023. Generic O-LLVMAutomaticMulti-Architecture Deobfuscation Framework
Based on Symbolic Execution. In Proceedings of the 4th International Conference on Advanced Information Science and

System (Sanya, China) (AISS ’22). Association for Computing Machinery, New York, NY, USA, Article 59, 6 pages.
https://doi.org/10.1145/3573834.3574541

[41] Mingyue Liang, Zhoujun Li, Qiang Zeng, and Zhejun Fang. 2018. Deobfuscation of Virtualization-Obfuscated Code
Through Symbolic Execution and Compilation Optimization. In Information and Communications Security, Sihan Qing,
Chris Mitchell, Liqun Chen, and Dongmei Liu (Eds.). Springer International Publishing, Cham, 313–324.

[42] Zhibo Liu and Shuai Wang. 2020. How Far We Have Come: Testing Decompilation Correctness of C Decompilers. In
Proceedings of the 29th ACM SIGSOFT International Symposium on Software Testing and Analysis (Virtual Event, USA)
(ISSTA 2020). Association for Computing Machinery, New York, NY, USA, 475–487. https://doi.org/10.1145/3395363.
3397370

[43] Lannan Luo, Jiang Ming, Dinghao Wu, Peng Liu, and Sencun Zhu. 2014. Semantics-based obfuscation-resilient binary
code similarity comparison with applications to software plagiarism detection. In Proceedings of the 22nd ACM SIGSOFT

International Symposium on Foundations of Software Engineering (Hong Kong, China) (FSE 2014). Association for
Computing Machinery, New York, NY, USA, 389–400. https://doi.org/10.1145/2635868.2635900

[44] Davide Maiorca, Davide Ariu, Igino Corona, Marco Aresu, and Giorgio Giacinto. 2015. Stealth attacks: An extended
insight into the obfuscation effects on Android malware. Computers and Security 51 (2015), 16–31. https://doi.org/10.
1016/j.cose.2015.02.007

[45] Benjamin Mariano, Yanju Chen, Yu Feng, Greg Durrett, and Işil Dillig. 2022. Automated Transpilation of Imperative to
Functional Code Using Neural-Guided Program Synthesis. Proc. ACM Program. Lang. 6, OOPSLA1, Article 71 (apr
2022), 27 pages. https://doi.org/10.1145/3527315

[46] BenjaminMariano, ZitengWang, Shankara Pailoor, Christian Collberg, and Isil Dillig. 2024. Control-FlowDeobfuscation
Using Trace-Informed Compositional Program Synthesis (extended version). https://bmarwritescode.github.io/assets/
pdf/chisel.pdf.

[47] Grégoire Menguy, Sébastien Bardin, Richard Bonichon, and Cauim de Souza Lima. 2021. Search-Based Local Black-Box
Deobfuscation: Understand, Improve and Mitigate. In Proceedings of the 2021 ACM SIGSAC Conference on Computer

and Communications Security (Virtual Event, Republic of Korea) (CCS ’21). Association for Computing Machinery, New
York, NY, USA, 2513–2525. https://doi.org/10.1145/3460120.3485250

[48] Uwe Meyer-Bäse, Encarni Castillo, Guillermo Botella, L. Parrilla, and Antonio García. 2011. Intellectual property
protection (IPP) using obfuscation in C, VHDL, and Verilog coding. In Independent Component Analyses, Wavelets,

Neural Networks, Biosystems, and Nanoengineering IX, Harold Szu (Ed.), Vol. 8058. International Society for Optics and
Photonics, SPIE, USA, 80581F. https://doi.org/10.1117/12.884142

[49] Philip O’Kane, Sakir Sezer, and Kieran McLaughlin. 2011. Obfuscation: The Hidden Malware. IEEE Security and Privacy

9, 5 (2011), 41–47. https://doi.org/10.1109/MSP.2011.98
[50] Mathilde Ollivier, Sébastien Bardin, Richard Bonichon, and Jean-Yves Marion. 2019. How to Kill Symbolic Deobfuscation

for Free (or: Unleashing the Potential of Path-Oriented Protections). In Proceedings of the 35th Annual Computer Security

Applications Conference (San Juan, Puerto Rico, USA) (ACSAC ’19). Association for Computing Machinery, New York,
NY, USA, 177–189. https://doi.org/10.1145/3359789.3359812

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 349. Publication date: October 2024.

https://doi.org/10.1109/ICSE-Companion.2019.00135
https://doi.org/10.1145/3560831.3564258
https://doi.org/10.1109/ICSSA.2017.29
https://doi.org/10.1145/3576915.3623186
https://doi.org/10.1145/3576915.3623186
https://doi.org/10.1145/3573834.3574541
https://doi.org/10.1145/3395363.3397370
https://doi.org/10.1145/3395363.3397370
https://doi.org/10.1145/2635868.2635900
https://doi.org/10.1016/j.cose.2015.02.007
https://doi.org/10.1016/j.cose.2015.02.007
https://doi.org/10.1145/3527315
https://bmarwritescode.github.io/assets/pdf/chisel.pdf
https://bmarwritescode.github.io/assets/pdf/chisel.pdf
https://doi.org/10.1145/3460120.3485250
https://doi.org/10.1117/12.884142
https://doi.org/10.1109/MSP.2011.98
https://doi.org/10.1145/3359789.3359812

349:30 Mariano et al.

[51] OpenAI. 2024. GPT-4 Technical Report. arXiv:2303.08774 [cs.CL]
[52] Peter-Michael Osera and Steve Zdancewic. 2015. Type-and-example-directed program synthesis. SIGPLAN Not. 50, 6

(jun 2015), 619–630. https://doi.org/10.1145/2813885.2738007
[53] Colby Parker, Jeffrey ToddMcDonald, and Dimitrios Damopoulos. 2021. Machine Learning Classification of Obfuscation

using Image Visualization. In Proceedings of the 18th International Conference on Security and Cryptography, SECRYPT

2021, July 6-8, 2021, Sabrina De Capitani di Vimercati and Pierangela Samarati (Eds.). SCITEPRESS, USA, 854–859.
https://doi.org/10.5220/0010607408540859

[54] Noah Patton, Kia Rahmani, Meghana Missula, Joydeep Biswas, and Işıl Dillig. 2024. Programming-by-Demonstration
for Long-Horizon Robot Tasks. Proceedings of the ACM on Programming Languages 8, POPL (Jan. 2024), 512–545.
https://doi.org/10.1145/3632860

[55] Nadia Polikarpova, Ivan Kuraj, and Armando Solar-Lezama. 2016. Program synthesis from polymorphic refinement
types. SIGPLAN Not. 51, 6 (jun 2016), 522–538. https://doi.org/10.1145/2980983.2908093

[56] Aleieldin Salem and Sebastian Banescu. 2016. Metadata recovery from obfuscated programs using machine learning.
In Proceedings of the 6th Workshop on Software Security, Protection, and Reverse Engineering, SSPREW@ACSAC 2016, Los

Angeles, California, USA, December 5-6, 2016, Mila Dalla Preda, Natalia Stakhanova, and Jeffrey Todd McDonald (Eds.).
ACM, USA, 1:1–1:11. https://doi.org/10.1145/3015135.3015136

[57] Jiasi Shen and Martin C. Rinard. 2019. Using active learning to synthesize models of applications that access databases.
In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation (Phoenix,
AZ, USA) (PLDI 2019). Association for Computing Machinery, New York, NY, USA, 269–285. https://doi.org/10.1145/
3314221.3314591

[58] Eui Chul Shin, Illia Polosukhin, and Dawn Song. 2018. Improving Neural Program Synthesis with Inferred Execution
Traces. In Advances in Neural Information Processing Systems, S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett (Eds.), Vol. 31. Curran Associates, Inc., USA. https://proceedings.neurips.cc/paper_
files/paper/2018/file/7776e88b0c189539098176589250bcba-Paper.pdf

[59] Armando Solar-Lezama, Christopher Grant Jones, and Rastislav Bodík. 2008. Sketching concurrent data structures. In
Proceedings of the ACM SIGPLAN 2008 Conference on Programming Language Design and Implementation (PLDI). ACM,
USA, 136–148. https://doi.org/10.1145/1375581.1375599

[60] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodík, Sanjit A. Seshia, and Vijay A. Saraswat. 2006. Combinatorial
sketching for finite programs. In Proceedings of the 12th International Conference on Architectural Support for Program-

ming Languages and Operating Systems (ASPLOS). ACM, USA, 404–415. https://doi.org/10.1145/1168857.1168907
[61] PreEmptive Solutions. 2023. Control Flow Obfuscation. https://www.preemptive.com/dasho/pro/userguide/en/

understanding_obfuscation_control.html. Accessed: 2023-04-11.
[62] Ramtine Tofighi-Shirazi, Irina Mariuca Asavoae, and Philippe Elbaz-Vincent. 2019. Fine-Grained Static Detection

of Obfuscation Transforms Using Ensemble-Learning and Semantic Reasoning. CoRR abs/1911.07523 (2019), 1–12.
arXiv:1911.07523 http://arxiv.org/abs/1911.07523

[63] Ramtine Tofighi-Shirazi, Irina-Mariuca Asavoae, Philippe Elbaz-Vincent, and Thanh-Ha Le. 2019. Defeating Opaque
Predicates Statically through Machine Learning and Binary Analysis. In Proceedings of the 3rd ACM Workshop on

Software Protection (London, United Kingdom) (SPRO’19). Association for Computing Machinery, New York, NY, USA,
3–14. https://doi.org/10.1145/3338503.3357719

[64] Ramtine Tofighi-Shirazi, Maria Christofi, Philippe Elbaz-Vincent, and Thanh-ha Le. 2018. DoSE: Deobfuscation Based
on Semantic Equivalence. In Proceedings of the 8th Software Security, Protection, and Reverse Engineering Workshop

(San Juan, PR, USA) (SSPREW-8). Association for Computing Machinery, New York, NY, USA, Article 1, 12 pages.
https://doi.org/10.1145/3289239.3289243

[65] S.K. Udupa, S.K. Debray, and M. Madou. 2005. Deobfuscation: reverse engineering obfuscated code. In 12th Working

Conference on Reverse Engineering (WCRE’05). IEEE, USA, 10 pp.–54. https://doi.org/10.1109/WCRE.2005.13
[66] Code Virtualizer. 2023. Total obfuscation against reverse engineering.
[67] Babak Yadegari and Saumya Debray. 2015. Symbolic Execution of Obfuscated Code. In Proceedings of the 22nd ACM

SIGSAC Conference on Computer and Communications Security (Denver, Colorado, USA) (CCS ’15). Association for
Computing Machinery, New York, NY, USA, 732–744. https://doi.org/10.1145/2810103.2813663

[68] Babak Yadegari, Brian Johannesmeyer, Ben Whitely, and Saumya Debray. 2015. A Generic Approach to Automatic
Deobfuscation of Executable Code. In 2015 IEEE Symposium on Security and Privacy. IEEE, USA, 674–691. https:
//doi.org/10.1109/SP.2015.47

[69] Xinlei Yao, Jianmin Pang, Yichi Zhang, Yong Yu, and Jianping Lu. 2012. A Method and Implementation of Control Flow
Obfuscation Using SEH. In 2012 Fourth International Conference on Multimedia Information Networking and Security.
IEEE, USA, 336–339. https://doi.org/10.1109/MINES.2012.25

[70] Geunha You, Gyoosik Kim, Sangchul Han, Minkyu Park, and Seong-Je Cho. 2022. Deoptfuscator: Defeating Advanced
Control-Flow Obfuscation Using Android Runtime (ART). IEEE Access 10 (2022), 61426–61440. https://doi.org/10.1109/

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 349. Publication date: October 2024.

https://arxiv.org/abs/2303.08774
https://doi.org/10.1145/2813885.2738007
https://doi.org/10.5220/0010607408540859
https://doi.org/10.1145/3632860
https://doi.org/10.1145/2980983.2908093
https://doi.org/10.1145/3015135.3015136
https://doi.org/10.1145/3314221.3314591
https://doi.org/10.1145/3314221.3314591
https://proceedings.neurips.cc/paper_files/paper/2018/file/7776e88b0c189539098176589250bcba-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/7776e88b0c189539098176589250bcba-Paper.pdf
https://doi.org/10.1145/1375581.1375599
https://doi.org/10.1145/1168857.1168907
 https://www.preemptive.com/dasho/pro/userguide/en/understanding_obfuscation_control.html
 https://www.preemptive.com/dasho/pro/userguide/en/understanding_obfuscation_control.html
https://arxiv.org/abs/1911.07523
http://arxiv.org/abs/1911.07523
https://doi.org/10.1145/3338503.3357719
https://doi.org/10.1145/3289239.3289243
https://doi.org/10.1109/WCRE.2005.13
https://doi.org/10.1145/2810103.2813663
https://doi.org/10.1109/SP.2015.47
https://doi.org/10.1109/SP.2015.47
https://doi.org/10.1109/MINES.2012.25
https://doi.org/10.1109/ACCESS.2022.3181373
https://doi.org/10.1109/ACCESS.2022.3181373

Control-Flow Deobfuscation Using Trace-Informed Compositional Program Synthesis 349:31

ACCESS.2022.3181373
[71] Geunha You, Gyoosik Kim, Jihyeon Park, Seong-Je Cho, and Minkyu Park. 2020. Reversing obfuscated control flow

structures in android apps using redex optimizer. In The 9th International Conference on Smart Media and Applications.
ACM, USA, 272–276.

[72] Geunha You, Gyoosik Kim, Jihyeon Park, Seong-Je Cho, and Minkyu Park. 2021. Reversing Obfuscated Control Flow
Structures in Android Apps Using ReDex Optimizer. In ACM (Jeju, Republic of Korea) (SMA 2020). Association for
Computing Machinery, New York, NY, USA, 272–276. https://doi.org/10.1145/3426020.3426089

[73] Ilsun You and Kangbin Yim. 2010. Malware Obfuscation Techniques: A Brief Survey. In 2010 International Conference

on Broadband, Wireless Computing, Communication and Applications. IEEE, USA, 297–300. https://doi.org/10.1109/
BWCCA.2010.85

[74] Yongwei Yuan, Arjun Radhakrishna, and Roopsha Samanta. 2023. Trace-Guided Inductive Synthesis of Recursive
Functional Programs. Proc. ACM Program. Lang. 7, PLDI, Article 141 (jun 2023), 24 pages. https://doi.org/10.1145/
3591255

[75] Guoqiang Zhang, Yuanchao Xu, Xipeng Shen, and Işıl Dillig. 2021. UDF to SQL translation through compositional lazy
inductive synthesis. Proc. ACM Program. Lang. 5, OOPSLA, Article 112 (oct 2021), 26 pages. https://doi.org/10.1145/
3485489

[76] Yujie Zhao, Zhanyong Tang, Guixin Ye, Xiaoqing Gong, and Dingyi Fang. 2021. Input-output example-guided data
deobfuscation on binary. Security and Communication Networks 2021 (2021), 1–16.

[77] Yongxin Zhou, Alec Main, Yuan X. Gu, and Harold Johnson. 2007. Information Hiding in Software with Mixed
Boolean-Arithmetic Transforms. In Information Security Applications, Sehun Kim, Moti Yung, and Hyung-Woo Lee
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 61–75.

Received 2024-04-05; accepted 2024-08-18

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 349. Publication date: October 2024.

https://doi.org/10.1109/ACCESS.2022.3181373
https://doi.org/10.1109/ACCESS.2022.3181373
https://doi.org/10.1145/3426020.3426089
https://doi.org/10.1109/BWCCA.2010.85
https://doi.org/10.1109/BWCCA.2010.85
https://doi.org/10.1145/3591255
https://doi.org/10.1145/3591255
https://doi.org/10.1145/3485489
https://doi.org/10.1145/3485489

	Abstract
	1 Introduction
	2 Overview
	3 Problem Statement
	3.1 Traces and Program Equivalence
	3.2 Control-flow Extensions and Reductions
	3.3 Problem Statement

	4 Deobfuscation Algorithm
	4.1 Trace Augmented Program Sketch
	4.2 Top-Level Algorithm
	4.3 Synthesizing Control Flow Skeletons
	4.4 Synthesizing Basic Blocks of a Control Flow Skeleton
	4.5 Properties of the Algorithm

	5 Implementation
	6 Experiments
	6.1 Benchmarks
	6.2 Experimental Set-up
	6.3 Main Results
	6.4 Baseline Comparison
	6.5 Related Tool Comparison
	6.6 Scalability Evaluation
	6.7 Ablation Study
	6.8 Generalizability of Chisel
	6.9 Binary Evaluation

	7 Limitations
	8 Related Work
	9 Conclusion and Future Work
	Acknowledgments
	References

