From Batch to Stream:
Automatic Generation of Online
Algorithms

Ziteng Wang?, Shankara Pailoor?', Aaryan Prakash', Yuepeng Wang?, Isil Dillig’

1 University of Texas at Austin
2 Simon Fraser University

=l TEXAS

Q The University of Texas at Austin

why online algorithms?

background
/ o I | I
Process Process
1010 —> — %
Data Database R:D_I . Rg_l : R@
esults 1 esults 1 esults
_
Stream processing (online)
4 . J N
P ¥ 9 9 9 O 63\ cb_:
@@@@@@@J% AP
Data Continuous Data Processing Live Results
_ /

why online algorithms?

background
e Stream processing (online)\
0110 w @ 9 9 9 9 9 sa\ tD:
1004 ¥ 9 9 9 9 9 9 —> A/
1010 . A/
9 Data Continuous Data Processing Live Results

/

ldeal for time-sensitive computations, e.qg.,

> fraud detection
> marketing/sales analytics
> Inventory management

>

o)

S
Mﬁ’
FIink

APACHE

STORM

APACHE

Spo

K

M

example
background

S ' new |tem

| previous mean }

-~

1 def mean(xs):

2 s =0

3 for x in xs: 2 new_s = (v * n) + X
4

5

Complexity: O(n) |

| Complexity: O(1) |
return s / len(xs) 4 return new_s / new_n, new_n

(a) Algorlthm for oﬂ’lme sample mean. (b) Algorithm for online sample mean.

S 3 len(XS)%;s,.,Fl Initializer(v, n) = (0, 0)

mean [@ 1 2] =1

S 6 len(xs)

[
N
W

mean [@ 1 2 3] 4// ;4 new_s = 6; new n = 4 }

mean onllne V N 3 1.5

problem statement

e ~ s Online\

List xs Online Scheme

| Initializer |

Program P v
| Updater
Result ?(XS) | (online program) |

Given an offline program P, find an online scheme
S = (I, P') such that P is equivalent to S.

problem statement
background

s ~ s Online\

List xs Online Scheme

| Initializer |

Program P

: Updater
“; (online program)

Result SD(xs)
_ 2N

Given an oftline program P, find an online scheme S = (I, P') such that P is equivalent to S.

s O:flin]?-lcc)irlrline iquivalence\
= fst P, T,
C st(foldl(xS)) p

what is the challenge?

Note on a Method for Calculating Corrected Sums of
Squares and Products

o B. P. Welford
Additional states needed | industries Limited, Pharmaceuticals Division.

/ ark, Macclesfield, Cheshire, England.
def variance(xs):
s = 0

1
2 —
: 1 def welford(v, s, sq, n, X):
3 for x in xs: (v, s, sq, n, x)
2 new_s = s + X
: > X new_n n + 1
3 —
5 avg = s / len(xs) -
. 4 avg = new_s / new_n
5 tmp = s / n
’ sq = 0 6 new_sq = sq + (x - tmp) * (x - avg)
8 for x in xs: -4 X P 5
7 new_v = new_sq / new_n
9 sq += (X - avg) ** 2
8 return new_v, new_S, new_sq, hew_n
10 return sq / len(xs)
/
\\~ nitializer(v, s, sq, n) = (0, 0, 0, 0)

Complex non-linear expressions

)

how does opera work?
opera workflow

5

Static Analysis ,

@ I LR P EP P EE PP EEEPEEER . "N t
0 Rel Spec [k ‘ ", =

, Inference . : ¢ ® :
. Offiine (batch) . Compositional i | online streaming)

program application

: . - Deductive -
S | Synthesis I

~ -

relational spec
bridging oftline and online

-

_

1 variance Xxs

2
3
4
5
6

let
S
avg
f acc x
in (foldl

f‘

foldl (+) 0 xs

s / (length xs)

acc + (x - avg)”2

9 xs) / (length xs)

-

Relational Spec\

Parameter | Specification
Y variance xs
S foldl (+) 0 xs
sq foldl (\acc x -> acc + (x - avg)”2) 0 xs

n

length xs

_

%

A relational function signature (RFS) ®@ consists of:

1. the function signature of the online algorithm

2. what those arguments actually mean

relational spec inference
inferring RFS

-

Example\
1 variance xs =
2 let
3 s = foldl (+) 9 xs
4 avg = s / (length xs)
5 f acc x = acc + (x - avg)"?2
6 1n (foldl f @ xs) / (length xs)
Parameter | Specification

S

SQ
n

variance Xxs

foldl (+) @ xs
foldl (\acc x -> acc + (x - avg)”*2) 0 Xxs
length xs

lightweight static analysis

10

relational spec inference

constructing initializers

-

Example\
| Initializer
; Va;::nce XS = Parameter | Specification
. s = foldl (+) @ xs e\ = variance XS
4 avg = s / (length xs) s =0 | foldl (+) 0 xs
5 f acc x = acc + (x - avg)’2 sq= 0| foldl (\acc x -> acc + (x - avg)”"2) 0 xs
6 in (foldl f @ xs) / (length xs) n= 0| length xs

RFS gives us the initializer for free:

construct initializer by evaluating expression on an empty list

11

how does opera work?
opera workflow

5

Initializer construction I

Static D |

éAnaIysig Compositional
- Deductive
T ’ Synthesis

N -

t%#

Online (streaming)
application

12

how does opera work?
opera workflow

f f 1
Analysis
: : application

Sketch + spec

Expressmn Synthesis

N. -

Compositional Deductive Synthesis

13

key idea

inductiveness modulo RFS

-
_

an online program P’ is inductive modulo RFS if it preserves the RFS

iy \'.
C(W\/ Re-define equivalence in terms of inductiveness modulo RFS)

Inductiveness modulo RFS, intuitively\

/

14

key idea

inductiveness modulo RFS

C(w\/

Re-define equivalence in terms of inductiveness modulo RFS)

-

_

Inductiveness modulo RFS, formally\

An online program &’ is inductive relative to an RFS @ it the following Hoare triple is valid

{P(xs, 1)} ¢ =P (y.x); xs' =xs++[x] {D(xs',y")}

/

15

equivalence re-defined

Theorem
/[N\

et P be an offline program and ® be an RFS. If an online scheme § = (/, P’) satisfies

(1) I E ®(Nil,) and (2) P’ is inductive relative to @,

\ then § is equivalent to the original offline program P. /

Re-defined Synthesis Task
4 d I

Given @, construct P’ that is inductive modulo ©.

N\ /

(D:
[(Q/“ This re-formulation facilitates deductive synthe&s)

how does opera work?

opera workflow

~ D

ll

decomposition

17

sketch

decomposition

[@ General high-level structure shared between offline and online)

Clnfer a sketch of online program to reuse structure '(W

N

C@ Online expressions are independent to each other)

CDecompose online synthesis to independently solvable subproblems ':(W

o

syntax-guided sketch generation

decomposition

replace offline expressions that operate over the input list with unknown holes

use the original expression as specitication for each hole

-

1 variance Xxs
2 let

foldl (+) @ xs

s / (length xs)
acc + (x - avg)"2
9 xs) / (length xs)

Example ™~

-

/

Sketch ~

online_variance (v, s, sq, h) X =
let new_s = O
new_n = [y
avg = s / new_n
new_sq = [Os
in (new_sq / new_n, new_s, new_sd, hew_n)

Unknown | Specification
Oq foldl (+) @ xs
0o length xs
O3 foldl (\ébc X => acc Hi(x-avg)t2) 0 xS 44///

19

how does opera work?

opera workflow

‘ @ { Online program learning

l Sketch + spec

Expression Synthesis

expression synthesis

20

expression synthesis

Example \ / online_variance (v, s, s, n) X = SketCh \

. let new_s = O
1 varlance XS = new_n = 09
let

2

avg = s / new_n

ka8 e in (:Zx_zg j SZW n, New_s, new_sqg, hew_n)
s / (length xs) « - _n, new_s, new_sq, new_

acc + (x - avg)“zﬁ?w,~~“’
9@ xs) / (length xs)

Unknown | Specification
O; foldl (+) @ xs
O9 length xs

= I 1 1

/ \ O3 foldl (Nace ¥ =» acc +i(x-aveg)t2) @ %S /

(YL

N: : : : : : :
(W/‘ Replace oftline expressions with equivalent online expressions

21

expression synthesis

(D)
C(W‘ Replace offline expressions with equivalent online expressmns

Qn 2
CTSZ Deductive approach to find such equivalent expressions)
I v

22

expression synthesis

(D)
[(W/‘ Replace offline expressions with equivalent online expressmns

:(\: . . : :
\Ii/* Relational spec enables logical reasoning for sketch completion

Y\
CT,«? Deductive approach to find such equivalent expressions)
Jr v

23

expression synthesis

how?

Given an expression E in the offline program,
synthesize an expression E’ of the online program such that

E and E' are equivalent modulo RFS

24

expression synthesis

equivalence modulo RFS

An online expression E’ equivalent to offline expression E modulo the RFS ® iff

O(xs,y)

///V online_variance (v, s, sq, h) X =

let new_s = 0O
new_n = Oy
avg = s / new_n
new_sq = O3

in (new_sqg / new_n, new_S, new_sq, hew_n)

Sketch ~N

= E' = E[(xs++[x])/xs]

Unknown | Specification
Oq foldl (+) @ xs
0o length xs
foldl (\acc x -> acc + (x-avg)”*2) 0 xs

/AN

Example: [], ™~

Claim: s + x is an equivalent expr

LHS =E' =s+x

RHS = E[(xs++[x])/xs] = foldl(+, 0, xs++[x])
= foldl(+, 0, xs) + x
=s+x=LHS

/

25

expression synthesis

equivalence modulo RFS

An online expression E’ equivalent to offline expression E modulo the RFS ® iff

®(xs,y) E E" = E[(xs++[x])/xs]

/° Find an implicate of form [] = E" where E"is a term over X, yy, ..., ¥,

[E(w\:

)

26

finding implicate

expression synthesis

-

Example ~
® = vy, =foldl(+0,xs) / length(xs) A y, = length(xs)
T = 0O =foldl(+ 0, xs++[x])
A = foldl(+, 0, xs++[x]) = foldl(+, 0, xs) + x

!

C@@ PATAA = O=(y; X1yy) +x)

27

expression synthesis

equivalence module RFS

An online expression E’ equivalent to offline expression E modulo the RFS ® iff

®(xs,y) E E" = E[(xs++[x])/xs]

N . . . "
'(W/‘ Find an implicate of form [[] = E"where E’is a term over x, y, ..., y,

@} RFS and oftline expression E contain higher-order combinators

28

expression synthesis

synthesis workflow

An online expression E’ equivalent to offline expression E modulo the RFS ® iff

®(xs,y) E E" = E[(xs++[x])/xs]

lll

Decomposition Findimplicate No such £ MineExpressions
i (@, E[(xs++[x]) /5] = O) Search

v
Found some [] = E’ Found E’ by search

. *
--

29

how well does it work?

benchmark
Source Description Example # of Benchmarks
Statistics Statistical computations skewhess 34
from SciPy and OnlineStats.|l geometric mean
LogSumExp
Online auction queries generating bidding reports
Auctions e o Nexrmark monitoring new bidders 18
determining top-k bids

52 tasks

collected

24

median AST size (offline, statistics)

39

median AST size (online, statistics)

42

median AST size (offline, auctions)

44

median AST size (online, auctions)

baseline comparison

evaluation

Existing Baselines

CVC5S
Sketch

% of Benchmarks Solved \

-~

[] [] [)
Statistics ~N Auctions
o —8— Opera o —8— Opera
%0 - —m— Sketch E <0 y —#— Sketch
_e —#— CVC5 S — —=— CVC5
@ wn '
S ") A
60 - —° féu 60 - :
-~ & o
e (]
40 ° 2 40 A .
(4 Q ®
o _ —) o
X— kS '
20 -,“ o 20 T 7
| T
_" (= ——————
0 - T ™1 L A L LR AL | T 0 L L L L LR AL | L L L L
109 10t 102 103 10° 10! 102 103

Running Total (sec) / \ Running Total (sec) /

synthesized

50 out of 51

online schemes

Opera synthesizes
average

25.() S 2.6X more than CVC5

running time 7 . 2 X more than Sketch

31

ablation study

evaluation

100

% of Benchmarks Solved

Percentage of Benchmarks Solved by Time

%
/XA
ﬁgx
92,
1 X/X’x/x
N
A
x/x"’% .
12 —=°
2 2

e~

"
1 &

'~

<

—tp

> —%— Opera

Opera-NoDecomp
—8— Opera-NoSymbolic

0 60 120 180

Running Total (sec)

240

RFS-driven synthesis baselines

Opera-NoDecomp

compositional synthesis disabled

Opera-NoSymbolic

enumerative search only

32

| Initializer construction I

8 RFS Online program |earn|ng \/4

Offline (batch)

o © 9 9 ® 9O 9 © =

CHICIICINCINCINC @} —> C?V
Online (streaming)

application Data Continuous Data Processing Live Results

Inference

program

Sketch + spec

: .- Streaming/Online

A\ Reuse offline program in online synthesis

synthesizes

50 out of 51

online scheme

\g/* Replace oftline exprs with equivalent online exprs

@/ Relational Spec for Init and Sketch Completion

s O

Symbolic Reasoning Search

52 benchmarks in 2 domains

average

25,0 S 2.6X more than CVC5

running time

Decomposition and symbolic reasoning significantly
/.2 X more than Sketch improve the performance of Opera

