From Batch to Stream: Automatic Generation of Online Algorithms

Ziteng Wang¹, Shankara Pailoor¹, Aaryan Prakash¹, Yuepeng Wang², Isil Dillig¹

¹ University of Texas at Austin

² Simon Fraser University

why online algorithms?

background

2

why online algorithms?

background

Ideal for time-sensitive computations, e.g.,

fraud detection

. . .

- marketing/sales analytics
- inventory management

З

example

background

problem statement

Given an offline program P, find an online scheme S = (I, P') such that P is equivalent to S.

5

- Given an offline program P, find an online scheme S = (I, P') such that P is equivalent to S.
 - **Offline-Online Equivalence** $\mathcal{P}(xs) = \text{fst}(\text{foldl}(\mathcal{P}', \mathcal{I}, xs))$

6

what is the challenge?

Additional states needed

1 0	<pre>lef variance(xs):</pre>			• • •	
2	$s = \emptyset$		of wolford(v		
3	for x in xs:		er wertoru(v,	S, Sq, II, X):	
4	s += x	2	$new_s = s -$	F X	
5	avg = s / len(xs)	3	new_n = n -	F]	
6		4	avg = new_s	s / new_n	
7	$\alpha - \alpha$	5	tmp = s / r	า	
/	Sq = 0	6	new_sq = so	q + (x - tmp) *	(x - avg)
8	TOR X IN XS: sq += $(x - ayg) + 2$	7	new_v = new	w_sq / new_n	
9	Sq = (x avg) x z	8	return new_	_v, new_s, new_s	q, new_n
10	recurn sq / ren(xs)				
	Complex non-linear expre	essions	nitializer(v,	s, sq, n) = (0,	0, 0, 0)

Note on a Method for Calculating Corrected Sums of Squares and Products

B. P. Welford

l Industries Limited, Pharmaceuticals Division. Park, Macclesfield, Cheshire, England.

how does opera work?

opera workflow

8

relational spec

bridging offline and online

A relational function signature (RFS) Φ consists of:

- 1. the function signature of the online algorithm
- 2. what those arguments actually mean

Relational Spec-

Parameter	Specification
V	variance xs
S	foldl (+) 0 xs
sq	foldl (\acc x -> acc + (x - avg)^2) 0 xs
n	length xs

relational spec inference

inferring RFS

Parameter	Specification
	variance xs
S	<pre>foldl (+) 0 xs</pre>
sq	<pre>foldl (\acc x -> acc + (x - avg)^2</pre>
n	length xs

relational spec inference

constructing initializers

RFS gives us the initializer for free:

construct initializer by evaluating expression on an empty list

Example~

Initializer

Parameter	Specification
$\mathbf{v} = 0$	variance xs
s = 0	foldl (+) 0 xs
sq = 0	<pre>foldl (\acc x -> acc + (x - avg)^2) 0 xs</pre>
n = 0	length xs

11

how does opera work?

opera workflow

Initializer construction

Compositional Deductive Synthesis

Online (streaming) application

how does opera work?

opera workflow

Compositional Deductive Synthesis

key idea

inductiveness modulo RFS

Inductiveness modulo RFS, intuitivelyan online program P' is inductive modulo RFS if it preserves the RFS

Re-define equivalence in terms of inductiveness modulo RFS

key idea

inductiveness modulo RFS

An online program \mathscr{P}' is inductive relative to an RFS Φ if the following Hoare triple is valid $\{\Phi(xs, y)\} \quad y' := \mathcal{P}'(y, x); \ xs' = xs + \{x\} \quad \{\Phi(xs', y')\}$

Inductiveness modulo RFS, formally ~

equivalence re-defined

- Let P be an offline program and Φ be an RFS. If an online scheme S = (I, P') satisfies (1) $I \models \Phi(\text{Nil}, I)$ and (2) P' is inductive relative to Φ ,
 - then S is equivalent to the original offline program P.

Theorem~

- **Re-defined Synthesis Task**
- Given Φ , construct P' that is inductive modulo Φ .

This re-formulation facilitates deductive synthesis

16

how does opera work?

opera workflow

decomposition

17

decomposition

Online expressions are independent to each other

Decompose online synthesis to independently solvable subproblems

syntax-guided sketch generation

decomposition

replace offline expressions that operate over the input list with unknown holes

use the original expression as specification for each hole

(online_v	variance (v, s, sq, n) x =
	let	new_s = \Box_1
		$new_n = \Box_2$
		avg = s / new_n
		$new_sq = \Box_3$
	in ((new_sq / new_n, new_s, new_sq, new_n)
	Unknown	Specification
		foldl (+) 0 xs
	\square_2	length xs
		foldl (\acc x -> acc + (x-avg)^2) 0 xs
\mathbf{X}	·	

how does opera work?

opera workflow

expression synthesis

Replace offline expressions with equivalent online expressions

Replace offline expressions with equivalent online expressions

Deductive approach to find such equivalent expressions

22

Replace offline expressions with equivalent online expressions

Deductive approach to find such equivalent expressions

23

Given an expression E in the offline program,

E and E' are equivalent modulo RFS

synthesize an expression E' of the online program such that

24

equivalence modulo RFS

	Sketch		
online_vari	lance (v, s, sq, n) x =		
let new	let new_s = \Box_1		
new_n = □2			
avg = s / new_n			
$new_sq = \Box_3$			
in (new	v_sq / new_n, new_s, new_sq, new_n)		
Unknown	Specification		
\Box_1	foldl (+) 0 xs		
\square_2	length xs		
	<pre>foldl (\acc x -> acc + (x-avg)^2) 0 xs</pre>		

An online expression E' equivalent to offline expression E modulo the RFS Φ iff $\Phi(xs, y) \models E' = E[(xs \leftrightarrow [x])/xs]$

25

equivalence modulo RFS

An online expression E' equivalent to offline expression E modulo the RFS Φ iff $\Phi(xs, y) \models E' = E[(xs \leftrightarrow [x])/xs]$

Find an implicate of form $\Box = E'$ where E' is a term over x, y_1, \dots, y_n

26

finding implicate

expression synthesis

Example
(/ length(xs)
$$\land y_2 = \text{length}(xs)$$

+[x])
(x]) = foldl(+, 0, xs) + x
 $\implies \Box = (y_1 \times y_2) + x$

27

equivalence module RFS

An online expression E' equivalent to offline expression E modulo the RFS Φ iff $\Phi(xs, y) \models E' = E[(xs \leftrightarrow [x])/xs]$

Find an implicate of form $\Box = E'$ where E' is a term over x, y_1, \ldots, y_n

RFS and offline expression E contain higher-order combinators

28

synthesis workflow

An online expression E' equivalent to offline expression E modulo the RFS Φ iff $\Phi(xs, y) \models E' = E[(xs \leftrightarrow [x])/xs]$

29

how well does it work?

benchmark

Source	Description	Example	# of Benchmarks
Statistics	Statistical computations from SciPy and OnlineStats.jl	skewness geometric mean LogSumExp	34
Auctions	Online auction queries from Nexmark	generating bidding reports monitoring new bidders determining top-k bids	18

30

baseline comparison

evaluation

Existing Baselines

CVC5

Sketch

synthesized

50 out of 51

online schemes

average

25.0 s

running time

Opera synthesizes

2.6X more than CVC5

7.2× more than Sketch

31

ablation study

evaluation

RFS-driven synthesis baselines

Opera-NoDecomp

compositional synthesis disabled

Opera-NoSymbolic enumerative search only

32

