
1

Test-based Solution Filtering for Program Synthesis

ZITENG WANG
∗
, UC San Diego, USA

1 INTRODUCTION
Consider the task of implementing a function mapEither f xs with the following type signature:

mapEither :: (a → Either b c) → [a] → ([b], [c]). (1)

Many programs may match that signature, but we intend to write one that applies f to each
element of xs and partitions the results by their type constructor into a pair of lists: Left for one
list and Right for the other. To prevent code duplication, we want to see if there is already a library
function implementing (1). To do so, we search for it on Hoogle [Mitchell 2004], a search engine
for Haskell APIs, but it fails to give us any solutions because no single function in the standard
library implements this signature.
Solutions fromHoogle+. Under these circumstances, a type-directed synthesis engine could help
us discover a satisfying code snippet. Guo et al. have recently developed Hoogle+ [Guo et al. 2020],
a search engine extending Hoogle with synthesis capabilities. In this case, Hoogle+ produces the
desired solution

\f xs → partitionEithers (map f xs). (2)

Unhelpful Solutions. However, the type signature alone cannot precisely capture programmer
intent; some programs of the same type are undesirable. For example, the following programs are
also synthesized for mapEither:

\f xs → curry (last []) f xs, (3)
\f xs → partitionEithers (repeat (f (last xs))). (4)

Solution (3) is never useful since executing (last []) always throws an exception; similarly,
solution (4) diverges as partitionEithers has to iterate through the infinite list returned by repeat.
Therefore, these solutions should not be in the candidate set, even though they satisfy the type
signature.

Another class of unhelpful solutions are duplicates, where several syntactically distinct solutions
have the same behavior. For example, solutions that apply either head or last to a singleton list
would yield the same result.
Check+. In this paper, we present Check+, an extension to Hoogle+ to filter out the uninteresting
solutions identified above. Moreover, Check+ can demonstrate how candidate programs behave
so that users may confirm if a synthesized solution matches their intent. Check+ tests every
synthesized solution with randomly generated inputs, generating feedback to improve the set of
solutions Hoogle+ provides. We use QuickCheck [Claessen and Hughes 2000], a property-based
testing framework for Haskell, to evaluate solutions inside the Haskell interpreter Hint [Gorin
2007]. Check+ generates properties that are testable for QuickCheck and then feed into Hint for
evaluation results.
∗Undergraduate Student; Advisor: Nadia Polikarpova; ACM Student Number: 4756401

Author’s address: Ziteng Wang, UC San Diego, USA, ziw329@ucsd.edu.



1:2 Ziteng Wang

2 ELIMINATING INVALID PROGRAMS

Invalid Solutions. A synthesized program is invalid if it throws an exception or diverges on all
tested inputs. As evidenced by (3), invalid terms such as (last []) and (fromJust Nothing) are
frequent because they match any polymorphic type. Unfortunately, there are too many of these
terms to manually exclude and therefore we opt for an automated way to evaluate solutions. Check+
generates a set of sample inputs with fair coverage to validate synthesized programs.
Challenges in Evaluating Solutions. We want to filter out functions that throw exceptions or
diverge. In removing diverging programs, one challenge will be the treatment of infinite data
structures. After all, testing an infinite data structure (e.g. by comparing it with another value) may
cause the testing itself to diverge. So how can we distinguish valid programs returning infinite
structures (e.g. repeat x) from diverging programs (e.g. length (repeat x))? On the other hand,
filtering out functions that throw exceptions is not as easy as checking if the program fails on
some input. This is because desirable components such as head are partial, meaning that they may
error out on some arguments. Therefore, our filter for exception-throwing programs will require a
nuanced testing approach for components like head to appear in our candidate programs.

Definition 2.1 (First Filtering Strategy). Using a random set of inputs, we evaluate a program as
follows:
(1) If the program terminates, without error, for all possible inputs, then it is valid and passes

the filter.
(2) If the program terminates, without error, for some input, but fails for others, then it is a

partial function and also passes the filter.
(3) If the program returns an infinite data structure, then it passes the filter. We can do this by

lazily producing output within a timeout.
(4) In all other cases, the program is rejected.

In this implementation, Check+ generates aQuickCheck-compatible property and validates
that property within the Hint interpreter. Our property simply tests if the synthesized solution
fails on all inputs. If the property failed with a counterexample, we know that the solution is at
least partial and therefore passes the filter. Otherwise, it is eliminated. Additionally, we can test
for a second property: whether a solution succeeds on all inputs. Those solutions for which this
property holds not only pass the filter, but can also be tagged as more preferrable.

3 ELIMINATING DUPLICATES
After getting rid of those solutions that never succeed, Check+ tests if a new solution is a duplicate,
meaning that it behaves identically to some previously generated solution. Consider the following
type query to Hoogle+,

lookup :: Eq a => [(a,b)] → a → b, (5)

describing a function performing a linear search on a dictionary represented by a list of pairs. It is
similar to Prelude.lookup, but is a partial function. Hoogle+ gives the desired solution,

\xs k → fromJust (lookup k xs), (6)

but will also generate

\xs k → head (maybeToList (lookup k xs)), (7)
\xs k → last (maybeToList (lookup k xs)). (8)



Test-based Solution Filtering for Program Synthesis 1:3

Id Query Check+

0
appBoth

(a → b) → (a → c) → a → (b, c)

(,) (arg2 arg0) (arg1 arg0)

(,) (arg2 (fromJust Nothing)) (arg1 arg0)

(,) (arg2 (head [])) (arg1 arg0)

(,) (arg2 (last [])) (arg1 arg0)

2 head-tail
[a] → (a,a)

(,) (last arg0) (last arg0)

(,) (head arg0) (head arg0)

last (zip [] arg0)

head (zip [] arg0)

3
mapEither

(a → Either b c) → [a] → ([b], [c])

partitionEithers (map arg1 arg0)

partitionEithers (repeat (arg1 (head arg0)))

partitionEithers (repeat (arg1 (last arg0)))

curry (last []) arg1 arg0

4
app3

(a → b → c → d) → a → c → b → d

arg3 arg2 arg0 arg1

fromMaybe (arg3 arg2 arg0 arg1) Nothing

arg3 (fromMaybe arg2 Nothing) arg0 arg1

arg3 arg2 (fromMaybe arg0 Nothing) arg1

arg3 arg2 arg0 (fromMaybe arg1 Nothing)

(7) (9)

Duplicate Checker
Previous solutions: (6)

(9)

Hoogle+

lookup (5)

Fig. 1. (left) Synthesized solutions with Check+ crossing out invalid ones. (right) Diagram illustrating how

Check+ eliminating duplicates.

While (7) and (8) are syntactically distinct, they are semantically equivalent to (6) because
maybeToList returns either a singleton or an empty list. We want to remove solutions with identical
behavior because they are less interesting to users.

Definition 3.1 (Second Filtering Strategy). As described in the diagram located at the right side of
Fig. 1, we evaluate a set of programs over the same, randomly generated inputs and compare their
results. Each time the synthesizer suggests a new solution, Check+ usesQuickCheck to test if it
behaves identically to at least one of the previous solutions. If so, we know that the solution is a
duplicate and it is eliminated. Otherwise, it passes the filter.

For the remaining set of programs, Check+ generates minimal examples of how they differ from
one another. We extract these from the counter-examples generated by QuickCheck at the second
filtering stage. Before showing them to the user, we shrink them for clarity.

Example 3.2 (Minimal Differentiating Example). Let us continue with the example of lookup (5).
Check+ filtered out solutions (7) and (8), and then Hoogle+ generated another candidate,

\xs k → fromJust (lookup k (cycle xs)). (9)
For this program, Check+ chose k = 0, xs = [(1,0)] as the minimal example. With the knowledge
that cycle xs returns an infinite list repeating xs, we see that (9) diverges if the key is not found
while (6) does not. This is because (9) terminates only if k exists in xs. Otherwise, lookup diverges
while searching for k in the rest of the infinite list. Therefore, k = 0, xs = [(1,0)] correctly
differentiates it from the other solutions, which raise an exception on the input instead.

4 EVALUATION
To directly compare the degree to which Check+ improves the quality of solutions, we present,
in Fig. 1, solution sets by Hoogle+ from benchmark queries and then run Check+ to cross out
invalid ones based on the strategies discussed above.

5 FUTUREWORK
In developing this project, we will explore two core directions. First, we want to use testing results
for ranking solutions, as mentioned in Sec. 2. Second, we aim to communicate testing results using
innovative visualizations of program behavior.



1:4 Ziteng Wang

REFERENCES
Koen Claessen and John Hughes. 2000. QuickCheck: A Lightweight Tool for Random Testing of Haskell Programs. SIGPLAN

Not. 35, 9 (Sept. 2000), 268–279. https://doi.org/10.1145/357766.351266
Daniel Gorin. 2007. Hint. http://hackage.haskell.org/package/hint.
Zheng Guo, Michael James, David Justo, Jiaxiao Zhou, Ziteng Wang, Ranjit Jhala, and Nadia Polikarpova. 2020. Program

Synthesis by Type-Guided Abstraction Refinement. PACMPL 4, POPL (Jan. 2020), 28. https://doi.org/10.1145/3371080
Neil Mitchell. 2004. Hoogle. https://www.haskell.org/hoogle/.

https://doi.org/10.1145/357766.351266
http://hackage.haskell.org/package/hint
https://doi.org/10.1145/3371080
https://www.haskell.org/hoogle/

	1 Introduction
	2 Eliminating Invalid Programs
	3 Eliminating Duplicates
	4 Evaluation
	5 Future Work
	References

