
1. Problem

(1) \xs -> (head xs, head xs)
(2) \xs -> ($) (last []) xs
(3) \xs -> last (zip [] xs)
(4) \xs -> head (zip [] xs)
(5) \xs -> last (zip xs [])
(6) \xs -> (head (xs++xs), head xs)

...
(15) \xs -> (head xs, last xs)

Specification: [a] -> (a, a)

Synthesizer HOOGLE+

Prevents interesting results from showing!

How can we remove them from the result set?

3. Test-based Filtering

5. Results

2. Uninteresting Results

Most uninteresting results can be classified into these categories...
We will filter them by testing!

§ Invalid results never return meaningful outputs

§ Always crash e.g. last []

§ Always diverge e.g. last (repeat x)

§ Duplicate results are functionally equivalent to

another result

§ E.g. head xs and head (xs ++ xs)

QUICKCHECK: Property-based Testing Framework

PROPERTY

NOTCRASH(𝑓)
PROPERTY

NOTDUP(𝑓)

HOOGLE+

• Valid	1
• Crashing	2
• Diverging		3
• Valid	1’
• Valid	2

Specification

CHECK+

Filter
Invalids

Filter
Duplicates

• Valid	1
• Valid	2

• Valid	1
• Valid	1’
• Valid	2

User Interface

Eliminate Invalid Programs
NOTCRASH(𝑓)

Prop. 1 ∀𝑎𝑟𝑔𝑠, 𝑓 𝑎𝑟𝑔𝑠 either fails or diverges.
Prop. 2 ∀𝑎𝑟𝑔𝑠, 𝑓 𝑎𝑟𝑔𝑠 returns.

Case (prop_1, prop_2) of
success, _ -> reject
_, success -> accept (total)
_ -> accept (partial)

Eliminate Duplicates
NOTDUPLICATE(𝑓)

Prop. 1
∀𝑓) ∈ 𝕊, 𝑓 ≠ 𝑓) where 𝕊 is the
set of all previous results

Case prop_1 of
failure -> reject
success -> accept

xs: [a] -> (a, a) Query

[-1, -2] -> (-1, -1)
[] -> error

(,) (head xs) (head xs)

[-1, -2] -> (-2, -2)
[] -> error

(,) (last xs) (last xs)

[-1, -2] -> (-1, -2)
[] -> error

(,) (head xs) (last xs)

last (zip [] xs)
head (zip [] xs)discarded

f: (a->b) -> g: (a->c) -> x: a -> (b, c) Q..

{_->0} {_->0} 3 -> (0, 0)

(,) (f x) (g x)

(,) (f (fromJust Nothing)) (g x)
(,) (g (head [])) (f x)
(,) (g (last [])) (f x)

discarded

f: (a->Either b c) -> xs: [a] -> ([b], [c]) Query

{_->Right 0} [] -> ([], [0])

partitionEithers (map f xs)

partitionEithers (repeat (f (last xs))
curry (last []) xs fdiscarded

{_->Right 0} [] -> ([], [0, 0, ...])

partitionEithers (repeat (f (head xs))

Test-based Solution Filtering for Program Synthesis
Ziteng (Zetten) Wang, University of California, San Diego Advised by Nadia Polikarpova

“Bad”!

§ Infinite Data Structures: Evaluation

§ \x -> (repeat x, head [])

§ Higher-order Functions: Verification and Input-generation

§ \f -> f (head [])

4. Challenges: Does it ever fail?

