
Test-based Solution Filtering for
Program Synthesis

Zetten Wang, UC San Diego

Type-based Program Synthesis gives bad results!
xs: [a] -> (a, a) Query

1. (,) (head xs) (head xs)

2. ($) (last []) xs

3. last (zip [] xs)

4. head (zip [] xs)

5. last (zip xs [])

6. head (zip xs [])

7. (,) (head (xs++xs)) (head xs)

...

15. (,) (head xs) (last x)

Get rid of these
uninteresting results to
save our desired one!

How to get rid of these uninteresting results?

Manually classify and recognize the patterns

Classification: Invalid Results
xs: [a] -> (a, a) Query

1. (,) (head xs) (head xs)

2. ($) (last []) xs

3. last (zip [] xs)

4. head (zip [] xs)

5. last (zip xs [])

6. head (zip xs [])

7. (,) (head (xs++xs)) (head xs)

...

15. (,) (head xs) (last x)

Invalid results can be..

• Always crash e.g. head [], last [], fromJust Nothing

• Always diverge e.g. last (repeat x), length (repeat x)

Classification: Duplicate Results
xs: [a] -> (a, a) Query

1. (,) (head xs) (head xs)

2. ($) (last []) xs

3. last (zip [] xs)

4. head (zip [] xs)

5. last (zip xs [])

6. head (zip xs [])

7. (,) (head (xs++xs)) (head xs)

...

15. (,) (head xs) (last x)

A duplicate result is syntactically distinct to
but has the same behavior as other results.

• [] vs. (zip xs [])
• (head xs) vs. (head (xs++xs))

Overview of Check+

QUICKCHECK: Property-based testing framework

PROPERTY
NOTCRASH(𝑓)

PROPERTY
NOTDUP(𝑓)

HOOGLE+

Specification CHECK+
Filter

Invalids
Filter

Duplicates User

A synthesized result is invalid if it throws an exception or
diverges on all tested inputs.

✴Build Prop. 1: Result either fails or diverges.f

✴Build Prop. 2: Result terminates with meaningful outputs.f

Property: Invalid Result

Prop. 1 passed Invalid & Reject!⇒

A synthesized result is invalid if it throws an exception or
diverges on all tested inputs.

✴Build Prop. 1: Result either fails or diverges.f

✴Build Prop. 2: Result terminates with meaningful outputs.f

Property: Invalid Result

Prop. 1 failed i.e. result is not invalid

Prop. 2 passed Total function⇒

Prop. 2 failed Partial function⇒

Property: Duplicate Result
A synthesized result is duplicate if it is syntactically distinct
to but has the same behavior as other results.

Build Prop. 1: where is the set of all
previous synthesized results.

f ≠ f′ , f′ ∈ 𝒮 𝒮

Challenges

• Infinite Data Structures

Consider \x -> (repeat x, head [])

Does it ever fail?

>> print (f x)
([x, x, x, x, x, x, x, x,
x, x, x, x, x, x, x, …

Challenges

• Higher-order Function

Consider \f -> f (head []) with f = {_ -> 0}

Does it ever fail?
>> g _ = 0
>> f g
0

Updates to Check+

• Random Generation vs. Enumeration: from QuickCheck to SmallCheck

• Function-arguments are enumerated based on size

• Input-output pairs captured from stdout

A synthesized result is invalid if it throws an exception or
diverges on all tested inputs.

Recall — Property: Invalid Result

Random vs. Enumeration

• Random testing with shrinking enabled

• First, generate an input example with a pre-defined seed and size.i

• Test it against function , until fails. Then is a counterexample to
the property that always holds.

f f(i) i
f

• Shrink the size of to get , where fails too.i i′ f(i′)

Random vs. Enumeration

• Random testing with shrinking enabled

• First, generate an input example with a pre-defined seed and size.i

• Test it against function , until fails. Then is a counterexample to
the property that always holds.

f f(i) i
f

• Shrink the size of to get , where fails too.i i′ f(i′)

Random vs. Enumeration

• Input generation with Enumeration

Test.QuickCheck> generate (resize 3 arbitrary) :: IO [String]

["\222119v","s?5",""]

Test.QuickCheck> generate (resize 3 arbitrary) :: IO [Int]

[0,-2]

Updates to Check+

• Random Generation vs. Enumeration: from QuickCheck to SmallCheck

• Function-arguments are enumerated based on size

• Input-output pairs captured from stdout

Example 1
xs: [a] -> (a, a) Query

1. (,) (head xs) (head xs)
[0, 1] -> (0, 0)
[1, 0] -> (1, 1)
[] -> error

2. (,) (last xs) (last xs)
[0, 1] -> (1, 1)
[1, 0] -> (0, 0)
[] -> error

3. (,) (head xs) (last xs)
[0, 1] -> (0, 1)
[1, 0] -> (1, 0)
[] -> error

Discarded results

1) last (zip [] xs)
2) head (zip [] xs)
3) last (zip xs [])
4) head (zip xs [])

Example 2
f: (a -> b) -> g: (a -> c) -> x: a -> (b, c) Query

1. (,) (f x) (g x)

{_->0} {_->0} 0 -> (0, 0)*

Discarded results

1. (,) (f (fromJust Nothing)) (g x)
2. (,) (g (head [])) (f x)
3. (,) (g (last [])) (f x)

*Note: in CLI given as \x -> case x of 0 -> 0; 1 -> 0; -1 -> 0; 2 -> 0; ... \x -> case x of 0 -> 0; 1 -> 0; -1 -> 0; 2 -> 0; ... 0 ==> (0, 0)

Example 3
f: (a -> Either b c) -> xs: [a] -> ([b], [c]) Query

1. partitionEithers (map f xs)

{_->Left 0} [] -> ([], [])

2. partitionEithers (repeat (f (head xs)))

{_->Right 0} [] -> ([], [0, 0, ...])

Discarded results

1. partitionEithers (repeat (f (last xs)))
2. curry (last []) xs f

